• Title/Summary/Keyword: 2D and 3D

Search Result 38,441, Processing Time 0.068 seconds

Development of 2D Tight-fitting Pattern from 3D Scan Data (3D 스캔 데이터를 활용한 밀착 패턴원형 개발)

  • Jeong, Yeon-Hee;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.1 s.149
    • /
    • pp.157-166
    • /
    • 2006
  • The human body, which is composed of concave and convex curvatures, makes it difficult to transfer into 2D patterns directly from 3D data. In previous studies. Jeong, et al.(2004) suggested the block method was fester and easier when dealing with the triangular patches of male's upper dress form. Although the block method is useful to make a pattern, the information(area, length, etc.) from a 2D pattern would be different depending on the direction of the block method. As a result horizontal and diagonal block methods were suggested as optimal methods for 2D tight-fitting patterns. These block methods were closer to the original area of the 3D scan data than the vertical block method. The total area of the 2D pattern obtained by the horizontal and diagonal block methods showed little differences. In case of the horizontal and diagonal block methods, the total error of the 2D pattern area ranged from $0.01\%\~0.25\%$. In comparing the length of the 2D pattern with that of the 3D scan data, the obtained 2D pattern was $0.1\~0.2cm$ shorter than the 3D scan data, which was within the acceptable range of errors in making clothes. 3D space distribution images between the body surface and the experimental clothing were also measured and $3\%$ enlargement of the original pattern was verified as the adequate adjustment.

3D Modeling of Self-Occluding Objects from 2D Drawings (자기폐색 물체의 2D 커브로부터의 3D모델링)

  • Cordier Frederic;Seo Hye-Won;Cho Young-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.9
    • /
    • pp.741-750
    • /
    • 2006
  • In this paper, we propose a method for reconstructing a 3D object (or a set of objects) from a 2D drawing provided by a designer. The input 2D drawing consists of a set of contours that may partially overlap each other or be self-overlapping. Accordingly, the resulting 3D object(s) may occlude each other or be self-occluding. The proposed method is composed of three major steps: 2D contour analysis, 3D skeleton computation, and 3D object construction. Our main contribution is to compute the 3D skeleton from the self-intersecting 2D counterpart. We formulate the 3D skeleton construction problem as a sequence of optimization problems, to shape the skeleton and place it in the 3D space while satisfying C1-continuity and intersection-free conditions. Our method is mainly for a silhouette-based sketching interface for the design of 3D objects including self-intersecting objects.

Assessment of Posterior Globe Flattening: Two-Dimensional versus Three-Dimensional T2-Weighted Imaging

  • Ann, Jun Hyung;Kim, Eung Yeop
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.178-185
    • /
    • 2015
  • Purpose: To compare the frequency of posterior globe flattening between two-dimensional T2-weighted imaging (2D T2WI) and three-dimensional (3D T2WI). Materials and Methods: Sixty-nine patients (31 female; mean age, 44.4 years) who had undergone both 5-mm axial T2WI and sagittal 3D 1-mm isovoxel T2WI of the whole brain for evaluation of various diseases (headache [n = 30], large hemorrhage [n = 19], large tumor or leptomeningeal tumor spread [n = 15], large infarct [n = 3], and bacterial meningitis [n = 2]) were used in this study. Two radiologists independently reviewed both sets of images at separate sessions. Axial T2WI and multi-planar imaging of 3D T2WI were visually assessed for the presence of globe flattening. The optic nerve sheath diameter (ONSD) was measured at a location 4 mm posterior to each globe on oblique coronal imaging reformatted from 3D T2WI. Results: There were significantly more globes showing posterior flattening on 3D T2WI (105/138 [76.1%]) than on 2D T2WI (27/138 [19.6%], P = 0.001). Inter-observer agreement was excellent for both 2D T2WI and 3D T2WI (Cohen's kappa = 0.928 and 0.962, respectively). Intra-class correlation coefficient for the ONSD was almost perfect (Cohen's kappa = 0.839). The globes with posterior flattening had significantly larger ONSD than those without on both 2D and 3D T2WI (P < 0.001; $6.14mm{\pm}0.44$ vs. $5.74mm{\pm}0.44$ on 2D T2WI; $5.90mm{\pm}0.47$ vs. $5.56mm{\pm}0.34$ on 3D T2WI). Optic nerve protrusion was significantly more frequent on reformatted 1-mm 3D T2WI than on 5-mm 2D T2WI (8 out of 138 globes on 3D T2WI versus one on 2D T2WI; P = 0.018). Conclusion: Posterior globe flattening is more frequently observed on 3D T2WI than on 2D T2WI in patients suspected of having increased intracranial pressure. The globes with posterior flattening have significantly larger ONSD than those without.

Brassiere Pattern Design Using the 3D Information - Application of Ruled Surface- (3차원 정보가 반영된 브래지어 패턴 설계 -Ruled surface의 활용-)

  • 이예진;홍경희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.11
    • /
    • pp.1536-1543
    • /
    • 2004
  • Garment is made by a 2D pattern and should be fitted to a human body which has 3D characteristics. Therefore, to design a pattern more effectively, the use of 3D information of a human body and the investigation of relationship between the 3D garment and 2D pattern are necessary. In this work, ruled surface method was used to reflect the 3D information of a human body for a pattern design. The images of the brassiere line on the woman's dress form were captured by phase-shifting projection moire system and the 3D information on the design line was obtained. 2D patterns on the various parts of the brassiere were developed directly from the 3D data by the ruled surface method. In addition, design line, the area and the amount of dart were quantified. And then we verify the appropriateness of the ruled surface method to the 2D pattern development by measuring the distribution of the space between women's figure and segmented clothing item. It was found that the ruled surface method is useful to transform the 3D design line to the 2D pattern, if we followed the steps suggested in this paper.

Design and Implementation of 2.5D Mapping System for Cloth Pattern (의복패턴을 위한 2.5D 맵핑 시스템의 설계 및 구현)

  • Kim, Ju-Ri;Joung, Suck-Tae;Jung, Sung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.611-619
    • /
    • 2008
  • 2.5D Mapping system that embody in this paper can make new design by doing draping to live various texture and model picture image of fashion clothes by pattern, and can confirm clothes work to simulation without producing direction sample or product directly. Also, the system can support function that can forecast fabric design and state of end article exactly, and the system can bring competitive power elevation of fashion industry and cost-cutting effect by doing draping using database of fabric and model picture image. 2.5D Mapping system composed and embodied by mesh warp algorithm module, light and shade extraction and application module, mapping path extraction module, mesh creation and transformation module, and 2.5D mapping module for more natural draping. Future work plans to study 3D fashion design system that graft together 3D clothes technology and 3D human body embodiment technology to do based on embodiment technology of 2.5D mapping system and overcomes expression limit of 2.5D mapping technology.

A System for Measuring 3D Human Bodies Using the Multiple 2D Images (다중 2D 영상을 이용한 3D 인체 계측 시스템)

  • 김창우;최창석;김효숙;강인애;전준현
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.5
    • /
    • pp.1-12
    • /
    • 2003
  • This paper proposes a system for measuring the 3D human bodies using the multiple 2D images. The system establishes the multiple image input circumstance from the digital camera for image measurement. The algorithm considering perspective projection leads us to estimate the 3D human bodies from the multiple 2D images such as frontal. side and rear views. The results of the image measurement is compared those of the direct measurement and the 3D scanner for the total 40 items (12 heights, 15 widths and 13 depths). Three persons measure the 40 items using the three measurement methods. In comparison of the results obtained among the measurement methods and the persons, the results between the image measurement and the 3D scanner are very similar. However, the errors for the direct measurement are relatively larger than those between the image measurement and the 3D scanner. For example, the maximum errors between the image measurement and the 3D scanner are 0.41cm in height, 0.39cm in width and 0.95cm in depth. The errors are acceptable in body measurement. Performance of the image measurement is superior to the direct. because the algorithm estimates the 3D positions using the perspective projection. In above comparison, the image measurement is expected as a new method for measuring the 3D body, since it has the various advantages of the direct measurement and 3D scanner in performance for measurement as well as in the devices, cost, Portability and man power.

Development of a 3D Semi-Automatic Measurement Protocol for Hand Anthropometric Measurement (손 치수 측정을 위한 3차원 반자동 측정 방법 개발)

  • Lee, Won-Sup;Yoon, Sung-Hye;You, Hee-Cheon
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.105-111
    • /
    • 2011
  • Measurement protocols for hand anthropometry have been studied for ergonomic product design. The present study developed a 3D semi-automatic measurement protocol (3D-SAMP) which semi-automatically measures various hand dimensions using a 3D scanner. The 3D-SAMP was compared with the conventional direct measurement method (DMM) to examine its effectiveness. The 3D-SAMP consists of (1) fabricating a plaster cast of the hand, (2) placing landmarks on the plaster hand, (3) scanning the plaster hand with a 3D scanner, (4) identifying automatically the positions of the landmarks on the digital hand, and (5) extracting automatically hand anthropometric measurements (lengths, widths, thicknesses, and circumferences). An evaluation experiment conducted in the study found the 3D-SAMP preferred to the DMM in terms of reliability (the number of dimensions exceeding the variability criteria SD=2 mm and CV=5% : 3D-SAMP =2 and DMM=24) and ease of measurement (3D-SAMP=5.2 and DMM=4.3 out of 7). The 3D-SAMP can be applied to ergonomic design of a hand-held product.

3D Object Modeling and Feature Points using Octree Model (8진트리 모델을 사용한 3D 물체 모델링과 특징점)

  • 이영재
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.599-607
    • /
    • 2002
  • The octree model, a hierarchical volume description of 3D objects, nay be utilized to generate projected images from arbitrary viewing directions, thereby providing an efficient means of the data base for 3D object recognition and other applications. We present 2D projected image and made pseudo gray image of object using octree model and multi level boundary search algorithm. We present algorithm for finding feature points of 2D and 3D image and finding matched points using geometric transformation. The algorithm is made of data base, it will be widely applied to 3D object modeling and efficient feature points application for basic 3D object research.

  • PDF

A Study of Utilizing 2D Photo Scan Technology to Efficiently Design 3D Models (2D 포토 스캔 기술을 활용한 효율적인 3D 모델링 제작방법 연구)

  • Guo, Dawei;Chung, Jeanhun
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.393-400
    • /
    • 2017
  • Generally, in special effect video and 3D animation design process, character and background's 3D model is built by 3D program like MAYA or 3DS MAX. But in that manual modeling mode, model design needs much time and costs much money. In this paper, two experimental groups are set to prove use 2D photo scan modeling mode to build 3D model is effective and advanced. The first experimental group is modeling the same object by different experimental setting. The second experimental group is modeling the same background by different experimental setting. Through those two experimental groups, we try to find an effective design method and matters need attention when we use photo scan design mode. We aim to get the model from whole experiment and prove photo scan modeling mode is effective and advanced.

Prediction of Cutting Stress by 2D and 3D-FEM Analysis and Its Accuracy (2D-3D FEM 해석에 의한 절단응력의 해석 및 정도)

  • 장경호;이상형;이진형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.95-101
    • /
    • 2001
  • Steel bridges, which have been damaged by load and corrosion, need repair or strengthening. In general, before the repair welding procedure, cutting procedure carry out. Therefore, the investigating of the behavior of stress generated by cutting is so important for safety of structure. Residual stress produced by gas cutting was analyzed using 2D and 3D thermal elasto-plastic FEM. According to the results, the magnitude of temperature was analyzed by 2D-FEM is smaller than that was analyzed using the 3D-FEM program at the start and end edge of flange. And the magnitude and distribution of residual stress of perpendicular to the cutting line was analyzed by the 2D-FEM program was similar to that was analyzed by the 3B-FEM program. Therefore, it is possible to predict of cutting stress by 2D and 3D FEM.

  • PDF