• Title/Summary/Keyword: 2D Scaling

Search Result 217, Processing Time 0.026 seconds

Stability and normal zone propagation in YBCO tapes with Cu stabilizer depending on cooling conditions at 77 K

  • Kruglov, S.L.;Polyakov, A.V.;Shutova, D.I.;Topeshkin, D.A.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.14-19
    • /
    • 2020
  • Here we present the comparative experimental study of the stability of the superconducting state in 4 mm YBCO tapes with copper lamination against local heat disturbances at 77 K. The samples are either directly cooled by immersing a bare YBCO tape into a liquid nitrogen pool or operate in nearly-adiabatic conditions when the tape is covered by a 0.6 mm layer of Kapton insulation. Main quench characteristics, i.e. minimum quench energies (MQEs) and normal zone propagation (NZP) velocities for both samples are measured and compared. Minimum NZP currents are determined by a low ohmic resistor technique eligible for obtaining V - I curves with a negative differential resistance. The region of transport currents satisfying the stationary stability criterion is found for the different cooling conditions. Finally, we use the critical temperature margin as a universal scaling parameter to compare the MQEs obtained in this work for YBCO tapes at 77 K with those taken from literature for low-temperature superconductors in vacuum at 4.2 K, as well as for MgB2 wires cooled with a cryocooler down to 20 K.

Exploiting Hardware Events to Reduce Energy Consumption of HPC Systems

  • Lee, Yongho;Kwon, Osang;Byeon, Kwangeun;Kim, Yongjun;Hong, Seokin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.1-11
    • /
    • 2021
  • This paper proposes a novel mechanism called Event-driven Uncore Frequency Scaler (eUFS) to improve the energy efficiency of the HPC systems. UFS exploits the hardware events such as LAPI (Last-level Cache Accesses Per Instructions) and CPI (Clock Cycles Per Instruction) to dynamically adjusts the uncore frequency. Hardware events are collected at a reference time period, and the target uncore frequency is determined using the collected event and the previous uncore frequency. Experiments with the NPB benchmarks demonstrate that the eUFS reduces the energy consumption by 6% on average for class C and D NPB benchmarks while it only increases the execution time by 2% on average.

T-shirt Design for Maintaining Proper Posture -Focusing on the Principle of Symmetry- (바른 자세 유지를 위한 상의류 디자인 연구 -대칭의 원리를 중심으로-)

  • Jinhua Han;Hanna Kim;Yoonmi Choi;Juhyun Ro
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.2
    • /
    • pp.337-352
    • /
    • 2023
  • This study develops a t-shirt design that align bones and balance muscles in order to maintain proper posture using the basic concepts of symmetry. First, theoretical and 3D design studies, existing literature on proper and improper posture, and the basic concepts of symmetry are studied to create the design. Next, the 3D design process applies bilateral, rotational, and scaling symmetries to design the inner lines from the basic application of symmetry. A two-stage design process is used, whereby the strain map and pressure points are analyzed using the CLO virtual clothing software, and the most effective design is determined through virtual testing. The results show that the Y+)( and X+― design, which combines the position and type of inner lines, is the most effective for posture correction and maintenance. Overall, this study helps create a theoretical and practical basis for exploring and understanding basic lines appropriate for the human body, and subsequently, for developing various products that maintain posture more accurately and precisely.

PROTOTYPE AUTOMATIC SYSTEM FOR CONSTRUCTING 3D INTERIOR AND EXTERIOR IMAGE OF BIOLOGICAL OBJECTS

  • Park, T. H.;H. Hwang;Kim, C. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.318-324
    • /
    • 2000
  • Ultrasonic and magnetic resonance imaging systems are used to visualize the interior states of biological objects. These nondestructive methods have many advantages but too much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct some biological objects to get the interior and exterior information, constructing 3D image from the series of the sliced sectional images gives more useful information with relatively low cost. In this paper, PC based automatic 3D model generator was developed. The system was composed of three modules. One is the object handling and image acquisition module, which feeds and slices objects sequentially and maintains the paraffin cool to be in solid state and captures the sectional image consecutively. The second is the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last is the image processing and visualization module, which processes a series of acquired sectional images and generates 3D graphic model. The handling module was composed of the gripper, which grasps and feeds the object and the cutting device, which cuts the object by moving cutting edge forward and backward. Sliced sectional images were acquired and saved in the form of bitmap file. The 3D model was generated to obtain the volumetric information using these 2D sectional image files after being segmented from the background paraffin. Once 3-D model was constructed on the computer, user could manipulate it with various transformation methods such as translation, rotation, scaling including arbitrary sectional view.

  • PDF

Development of 3-D Web Graphic Library Using Java (자바를 이용한 3차원 웹 그래픽 라이브러리의 개발)

  • Jeong, Gab-Joong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1709-1715
    • /
    • 2005
  • This paper describes the development of 3-D web graphic library for dynamic web graphic design. The 3-D web graphic library developed in this per supports creation of 3-D objects like cube and sphere objects, elimination of hidden line and surface, and the shading of diffuse and specular reflections. It provides, in drawing, perspective projection of an object depth first sort of multiple objects, and wire frame and solid models. It also supports texture mapping function for realistic and dynamic web application in application software. Each created 3-D object gives functions for the scaling, translation, and rotation of itself. It can be used for the development of dynamic web application software and the advertisement of information for business and tourism as a 3-D web graphic library engine. It is written in 'Java' language and runs on web browsers with Java virtual machine without any dependancy of client computer system.

The Effect of Family-Centered Coaching Based on Sensory Integration on the Performance of Children with Autism Spectrum Disorder (감각통합 기반의 가족중심코칭이 자폐스펙트럼장애 아동의 작업수행에 미치는 효과)

  • Kim, Yoon-Sung;Kim, Kyeong-Mi;Chang, Moon-Young;Hong, So Young
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.19 no.2
    • /
    • pp.12-25
    • /
    • 2021
  • Objective : This study explored the effects of family-centered coaching using a sensory integration-based approach on the levels of performance and satisfaction for children with autism spectrum disorder (ASD). Methods : From April 16, 2020 to August 6, 2020, participants included 10 children with ASD, between the ages of three to six who met the inclusion criteria, and their guardians. I used the Canadian Occupational Performance Measure (COPM) to evaluate the children's levels of performance and satisfaction and the Goal Attainment Scaling (GAS) to evaluate their occupational performance. The experimental group (n=5) continued the sensory integration therapy while receiving their personalized family-centered coaching training for 60 minutes per week. This continued for four weeks via home visits and video calls. The control group (n=5) also continued to receive the sensory integration therapy while receiving sensory integration-based general counseling in relation to activity objectives. Results : Statistically significant differences were found in the scores of COPM performance and satisfaction and the GAS scores between the experimental group and the control group, before and after the intervention (p<.05). Statistically significant differences were found in score changes in COPM and GAS, between the two groups (p<.05). Cohen's d also showed a big effect size on the scores of COPM satisfaction (d=2.768) and the GAS scores (d=2.786). Conclusion : This study demonstrated that the sensory integration-based, family-centered coaching had more positive effects on the level of performance and satisfaction of children with ASD, than general counseling.

Design and Verification of 3D Digital Image Correlation Systems for Measurement of Large Object Displacement Using Stereo Camera (대면적 대상물 변위계측을 위한 스테레오 카메라 3차원 DIC 시스템 기초설계 및 검증에 관한 연구)

  • Ko, Younghun;Seo, Seunghwan;Lim, Hyunsung;Jin, Tailie;Chung, Moonkyung
    • Explosives and Blasting
    • /
    • v.38 no.2
    • /
    • pp.1-12
    • /
    • 2020
  • Digital Image Correlation is a well-established method for displacements, strains and shape measurements of engineering objects. Stereo-camera 3D Digital Image Correlation (3D-DIC) systems have been developed to match the specific requirements for measurements posed by material and mechanical industries. Although DIC method provides the capabilities of scaling a field-of-view(FOV), dimensions of Geotechnical structure objects in many cases are too big to be measured with DIC based on a single camera pair. It can be the most important issue with applying 3D DIC to the measurement of Geotechnical structures. In this paper, We were present stereo vision conditions in a 3D DIC system that can be measured for large FOV(30×20m) and high precisions(z-displacement 0.5mm) of the ground objects with Stereo-camera DIC systems.

A Pulser System with Parallel Spark Gaps at High Repetition Rate

  • Lee, Byung-Joon;Nam, Jong-Woo;Rahaman, Hasibur;Nam, Sang-Hoon;Ahn, Jae-Woon;Jo, Seung-Whan;Kwon, Hae-Ok
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.305-312
    • /
    • 2011
  • A primary interest of this work is to develop an efficient and powerful repetitive pulser system for the application of ultra wide band generation. The important component of the pulser system is a small-sized coaxial type spark gap with planar electrodes filled with SF6 gas. A repetitive switching action by the coaxial spark gap generates two consecutive pulses in less than a microsecond with rise times of a few hundred picoseconds (ps). A set of several parameters for the repetitive switching of the spark gap is required to be optimized in charging and discharging systems of the pulser. The parameters in the charging system include a circuit scheme, circuit elements, the applied voltage and current ratings from power supplies. The parameters in the discharging system include the spark gap geometry, electrode gap distance, gas type, gas pressure and the load. The characteristics of the spark gap discharge, such as breakdown voltage, output current pulse and recovery rate are too dynamic to control by switching continuously at a high pulse repetition rate (PRR). This leads to a low charging efficiency of the spark gap system. The breakthrough of the low charging efficiency is achieved by a parallel operation of two spark gaps system. The operational behavior of the two spark gaps system is presented in this paper. The work has focused on improvement of the charging efficiency by scaling the PRR of each spark gap in the two spark gaps system.

Design of QCA Latch Using Three Dimensional Loop Structure (3차원 루프 구조를 이용한 QCA 래치 설계)

  • You, Young-Won;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.227-236
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) consists of nano-scale cells and demands very low power consumption so that it is one of the alternative technologies that can overcome the limits of scaling CMOS technologies. Various circuits on QCA have been researched until these days, a latch required for counter and state control has been proposed as a component of sequential logic circuits. A latch uses a feedback loop to maintain previous state. In QCA, a latch uses a square structure using 4 clocks for feedback loop. Previous latches have been proposed using many cells and clocks in coplanar. In this paper, in order to eliminate these defects, we propose a SR and D latch using multilayer structure on QCA. Proposed three dimensional loop structure is based on multilayer and consists of 3 layers. Each layer has 2 clock differences between layers in order to reduce interference. The proposed latches are analyzed and compared to previous designs.

Design of Mach-Scale Blade for LCH Main Rotor Wind Tunnel Test (소형민수헬기 주로터 풍동시험을 위한 마하 스케일 블레이드 설계)

  • Kee, YoungJung;Park, JoongYong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.159-166
    • /
    • 2018
  • In this study, the internal structural design, dynamic characteristics and load analyses of the small scaled rotor blade required for LCH(Light Civil Helicopter) main rotor wind tunnel test were carried out. The test is performed to evaluate the aerodynamic performance and noise characteristics of the LCH main rotor system. Therefore, the Mach-scale technique was appled to design the small scaled blade to simulate the equivalent aerodynamic characteristics as the full scale rotor system. It is necessary to increase the rotor speed to maintain the same blade tip speed as the full scale blade. In addition, the blade weight, section stiffness, and natural frequency were scaled according to the Mach-type scaling factor(${\lambda}$). For the design of skin, spar, torsion box, which are the main components of the blade, carbon and glass fiber composite materials were adopted, and composite materials are prepreg types that can be supplied domestically. The KSec2D program was used to evaluate the section stiffness of the blade. Also, structural loads and dynamic characteristics of the Mach scale blade were investigated through the comprehensive rotorcraft analysis program CAMRADII.