A 3D point cloud map is an essential elements in various fields, including precise autonomous navigation system. However, generating a 3D point cloud map using a single sensor has limitations due to the price of expensive sensor. In order to solve this problem, we propose a precise 3D mapping system using low-cost sensor fusion. Generating a point cloud map requires the process of estimating the current position and attitude, and describing the surrounding environment. In this paper, we utilized a commercial visual-inertial odometry sensor to estimate the current position and attitude states. Based on the state value, the 2D LiDAR measurement values describe the surrounding environment to create a point cloud map. To analyze the performance of the proposed algorithm, we compared the performance of the proposed algorithm and the 3D LiDAR-based SLAM (simultaneous localization and mapping) algorithm. As a result, it was confirmed that a precise 3D point cloud map can be generated with the low-cost sensor fusion system proposed in this paper.
최근 스마트 시티에 의한 공간정보 제작의 일환으로 역설계를 위한 구조물의 3차원 재현이 주목받고 있다. 특히, 구조물 3차원 재현에 지상 LiDAR가 주로 사용되며 UAS에 의한 3차원 재현 연구가 활발히 진행되고 있다. 다만, 두 기술 모두 촬영각에 의한 사각지대가 발생한다. 본 연구는 수직구조물을 대상으로 UAS를 활용한 SfM기반 영상해석 기술을 통해 구현된 3D 모델과 지상 LiDAR 기반의 레이저 스캐닝에 의한 3D 모델간의 재현성 및 효용성을 검토하고 사각지대 보완을 위해 2가지 3D 모델을 조합 검토한다. 이를 위해 인공암벽을 대상으로 UAS 기반 영상을 취득하고 GNSS 장비와 토탈 스테이션을 통해 수직면 기준점(VCP) 및 점검점을 설정, SfM 기반 영상해석 기술을 활용하여 구조물의 3D 모델을 재현한다. 또한, 지상 LiDAR 스캐닝을 통해 구조물의 3D 측점 군을 취득하고 점검점을 기준으로 재현의 정확도와 3D 모델의 완성도를 UAS 기반 영상해석결과와 비교·검토하였다. 특히, UAS 및 지상 LiDAR로부터 구축한 측점 군의 조합을 통해 정확도와 실감 재현도를 확인하였다. 연구결과, 정확도 및 3D 모델 완성도에서 UAS 기반 영상해석이 우수하였고, 두 방법의 측점 군 조합으로 정확도가 향상됨을 확인하였다. UAS 및 지상 LiDAR 레이저 스캐닝 조합방법으로 수직구조물 대상 정밀 3차원 모델의 사각지대 보완·재현이 가능하므로 공간정보 구축, 안전진단 및 유지보수 관리에 효율적인 사용이 기대된다.
Digital Twin is a technology that creates a photocopy of real-world objects on a computer and analyzes the past and present operational status by fusing the structure, context, and operation of various physical systems with property information, and predicts the future society's countermeasures. In particular, 3D rendering technology (UAS, LiDAR, GNSS, etc.) is a core technology in digital twin. so, the research and application are actively performed in the industry in recent years. However, UAS (Unmanned Aerial System) and LiDAR (Light Detection And Ranging) have to be solved by compensating blind spot which is not reconstructed according to the object shape. In addition, the terrestrial LiDAR can acquire the point cloud of the object more precisely and quickly at a short distance, but a blind spot is generated at the upper part of the object, thereby imposing restrictions on the forward digital twin modeling. The UAS is capable of modeling a specific range of objects with high accuracy by using high resolution images at low altitudes, and has the advantage of generating a high density point group based on SfM (Structure-from-Motion) image analysis technology. However, It is relatively far from the target LiDAR than the terrestrial LiDAR, and it takes time to analyze the image. In particular, it is necessary to reduce the accuracy of the side part and compensate the blind spot. By re-optimizing it after fusion with UAS and Terrestrial LiDAR, the residual error of each modeling method was compensated and the mutual correction result was obtained. The accuracy of fusion-based 3D model is less than 1cm and it is expected to be useful for digital twin construction.
본 논문에서는 배달 서비스 로봇 응용을 위한 LiDAR 센서 기반 경량화된 객체 분류 시스템을 제안한다. 3차원 포인트 클라우드 데이터를 Pillar Feature Network (PFN)을 사용하여 2차원 pseudo image로 인코딩한 후, Depthwise Separable Convolution Neural Network (DS-CNN)에 기반하여 설계된 네트워크를 통해 객체 분류를 수행하는 경량화된 시스템을 설계하였다. 구현 결과, 설계한 분류 네트워크의 파라미터 수와 Multiply-Accumulate (MAC) 연산 수는 각각 9.08K 및 3.49M이며, 94.94%의 분류 정확도를 지원 가능함을 확인하였다.
본 논문은 3D LiDAR의 포인트 클라우드 데이터를 가공하여 3D 객체탐지를 위한 알고리즘을 제안했다. 기존에 2D LiDAR와 달리 3D LiDAR 기반의 데이터는 너무 방대하며 3차원으로 가공이 힘들었다. 본 논문은 3D LiDAR 기반의 다양한 연구들을 소개하고 3D LiDAR 데이터 처리에 관해 서술하였다. 본 연구에서는 객체탐지를 위해 클러스터링 기법을 활용한 3D LiDAR의 데이터를 가공하는 방법을 제안하며 명확하고 정확한 3D 객체탐지를 위해 카메라와 융합하는 알고리즘 설계하였다. 또한, 3D LiDAR 기반 데이터를 클러스터링하기 위한 모델을 연구하였으며 모델에 따른 하이퍼 파라미터값을 연구하였다. 3D LiDAR 기반 데이터를 클러스터링할 때, DBSCAN 알고리즘이 가장 정확한 결과를 보였으며 DBSCAN의 하이퍼 파라미터값을 비교 분석하였다. 본 연구가 추후 3D LiDAR를 활용한 객체탐지 연구에 도움이 될 것이다.
Eun-Sung, Park;Ajay Patel, Kumar;Muhammad Akbar Andi, Arief;Rahul, Joshi;Hongseok, Lee;Byoung-Kwan, Cho
농업과학연구
/
제49권3호
/
pp.483-493
/
2022
It is important to improve the efficiency of plant breeding and crop yield to fulfill increasing food demands. In plant phenotyping studies, the capability to correlate morphological traits such as plant height, stem diameter, leaf length, leaf width, leaf angle and size of panicle of the plants has an important role. However, manual phenotyping of plants is prone to human errors and is labor intensive and time-consuming. Hence, it is important to develop techniques that measure plant phenotypic traits accurately and rapidly. The aim of this study was to determine the feasibility of point cloud data based on a 3D light detection and ranging (LiDAR) system for plant phenotyping. The obtained results were then verified through manually acquired data from the sorghum samples. This study measured the plant height, plant crown diameter and the panicle height and diameter. The R2 of each trait was 0.83, 0.94, 0.90, and 0.90, and the root mean square error (RMSE) was 6.8 cm, 1.82 cm, 5.7 mm, and 7.8 mm, respectively. The results showed good correlation between the point cloud data and manually acquired data for plant phenotyping. The results indicate that the 3D LiDAR system has potential to measure the phenotypes of sorghum in a rapid and accurate way.
This paper presents an adaptive method to avoid obstacles in various environmental settings, using a two-dimensional (2D) LiDAR sensor for mobile robots. While the conventional reaction based smooth nearness diagram (SND) algorithms use a fixed safety distance criterion, the proposed algorithm autonomously changes the safety criterion considering the obstacle density around a robot. The fixed safety criterion for the whole SND obstacle avoidance process can induce inefficient motion controls in terms of the travel distance and action smoothness. We applied a multinomial logistic regression algorithm, softmax regression, to classify 2D LiDAR point clouds into seven obstacle structure classes. The trained model was used to recognize a current obstacle density situation using newly obtained 2D LiDAR data. Through the classification, the robot adaptively modifies the safety distance criterion according to the change in its environment. We experimentally verified that the motion controls generated by the proposed adaptive algorithm were smoother and more efficient compared to those of the conventional SND algorithms.
최근 국내외 건설 분야에서 건축물 리노베이션 및 유지보수를 위한 BIM 적용이 활발해지는 추세이나, 상당수 기존 건축물이 현 상태를 반영하지 않은 2D 도면을 보유함에 따라 이를 바탕으로 한 BIM 모델 작성이 어려운 상황이다. 따라서 본 연구는 역설계 기술을 활용하고자, 건축 MEP 역설계 지침을 위한 포인트 클라우드 데이터 관련 데이터 구조 및 프로세스를 분석하고, 역설계 지침을 위한 고려사항을 도출하였다. 국내 시장에서 3차원 스캐닝 기술의 활발한 적용을 위해, 프로젝트 수행 초기 단계인 지상 라이다를 이용한 현장에 대한 데이터 취득, 취득 단계에서 얻은 포인트 클라우드 데이터의 기초 처리 및 프로세스 분석에 대해 연구 목적을 두고 있다.
최근 건축물의 노령화에 따른 건물 전체 기능저하와 화재 및 지반침하와 같은 재난에 따른 건축물의 안정성 저하로 구조물 해체 수요가 급격히 증가하는 추세이다. 특히, 구조물 구성부위의 변형이나 손상의 정도가 심각한 구조물은 부재 내 집중하중이 발생하여 구조물 전체의 안정성이 저하되어 빠른 시일 내에 안전하게 구조물 해체가 가능한 시공기술에 대한 수요가 증가하고 있다. 또한, 노후 구조물에 대한 비인가 증축이나 불법 개조와 같은 구조적 변경으로 시공 당시 건물의 설계도면과 상이한 경우가 빈번하다고 보고되어오고 있다. 본 연구에서는 해체 대상 구조물의 시공 당시 도면과 현 시점 구조와의 차이점을 보완하기 위하여, 실내외 구조 표면에 대한 실측값을 활용하여 3차원 모델을 역설계하는 기법을 제안하였다. 실제 해체 시공 예정인 건축물을 대상으로 구조물 외곽에 대하여 드론 촬영을 실시하고 구조물 내부는 LiDAR 스캐닝을 수행하여 건물외곽과 실내에 대한 점군데이터를 획득한다. 각각 점군데이터는 Smartmapper를 활용하여 정밀하게 정합되며 2차원 도면제작과 3차원 구조해석용 모델 작성에 사용된다. 제안된 역설계 기법을 검증하기 위하여 드론화상자료, LiDAR 스캐너자료, 정합자료로부터 생성된 3차원 모델과 실측된 부재간의 거리를 비교하였다.
최근 지도제공 서비스 업체 및 각 포털 사이트가 일반 사용자를 위한 3차원 가상도시 모델 서비스에 참여하면서 그 수요가 확대되고 있다. 또한 웹이나 모바일 장비로 이러한 3차원 정보를 제공하게 되면서 자료의 정확도 및 전송속도, 시간의 흐름에 따른 갱신이 더욱 중요한 요소로 부각되고 있다. 웹으로 3차원 자료를 제공하는 다양한 기술중에서 VRML은 간단한 플러그인 설치를 통하여 별도의 비용이 없이 웹상에 제공할 수 있기 때문에 가장 많이 사용되고 있다. LiDAR 시스템은 공간자료를 손쉽고 정밀하게 취득할 수 있는 이점이 있어 다방면으로 연구와 활용이 이루어지고 있다. 그러나 일반적으로 LiDAR 자료는 객체의 3차원 정보를 불규칙한 점군 형태로 취득하므로, 자료를 변환없이 3차원 형태로 화면에 나타내기 위해서는 많은 연산 처리를 필요로 하게 되므로 높은 사양의 처리 프로세서와 많은 양의 저장공간이 필요하다. 따라서 본 연구에서는 도심지역 LiDAR 자료를 압축하고 네트워크를 통하여 3차원으로 제공하는 것을 목적으로 하였다. 이때 LiDAR 자료의 저장공간 및 처리속도 문제를 위하여, 압축 알고리즘을 적용한 2차원 격자 형태의 자료로 압축하는 알고리즘을 활용하였다. 또한 3차원 표현을 위하여 압축된 LiDAR 자료를 VRML에 적합한 코드로 변환하는 알고리즘을 개발하여 도심지역을 3차원 형식으로 표현하는 기법을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.