• Title/Summary/Keyword: 2D Laser Scanning System

Search Result 58, Processing Time 0.032 seconds

Real Time Linux System Design (리얼 타임 리눅스 시스템 설계)

  • Lee, Ah Ri;Hong, Seon Hack
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.13-20
    • /
    • 2014
  • In this paper, we implemented the object scanning with nxtOSEK which is an open source platform. nxtOSEK consists of device driver of leJOS NXJ C/Assembly source code, TOPPERS/ATK(Automotive real time Kernel) and TOPPERS/JSP Real-Time Operating System source code that includes ARM7 specific porting part, and glue code make them work together. nxtOSEK can provide ANSI C by using GCC tool chain and C API and apply for real-time multi tasking features. We experimented the 3D scanning with ultra sonic and laser sensor which are made directly by laser module diode and experimented the measurement of scanning the object by knowing x, y, and z coordinates for every points that it scans. In this paper, the laser module is the dimension of $6{\times}10[mm]$ requiring 5volts/5[mW], and used the laser light of wavelength in the 650[nm] range. For detecting the object, we used the beacon detection algorithm and as the laser light swept the objects, the photodiode monitored the ambient light at interval of 10[ms] which is called a real time. We communicated the 3D scanning platform via bluetooth protocol with host platform and the results are displayed via DPlot graphic tool. And therefore we enhanced the functionality of the 3D scanner for identifying the image scanning with laser sensor modules compared to ultra sonic sensor.

Development of 3D Measuring System using Spherical Coordinate Mechanism by Point Laser Sensor (포인트 레이저 센서를 이용한 구면좌표계식 3차원 형상측정시스템 개발)

  • 맹희영;성봉현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.201-206
    • /
    • 2004
  • Laser scanner are getting used for inspection and reverse engineering in industry such as motors, electronic products, dies and molds. However, due to the lack of efficient scanning technique, the tasks become limited to the low accuracy purpose. The main reasons for this limitation for usefulness are caused from the optical drawback, such as irregular reflection, scanning direction normal to measuring surface, the influence of surface integrity, and other optical disturbances. To overcome these drawback of laser scanner, this study propose the mechanism to reduce the optical trouble by using the 2 kinds of rotational movement axis and by composing the spherical coordinate to scanning the surface keeping normal direction consistently. So, it could be designed and interfaced the measuring device to realize that mechanism, and then it could acquisite the accurate 3D form cloud data. Also, these data are compared with the standard master ball and the data acquisited from the touch point sensor, to evaluate the accuracy and stability of measurement and to demonstrate the implementation of an dental tooth purpose system

  • PDF

Evaluation of Geometric Error Sources for Terrestrial Laser Scanner

  • Lee, Ji Sang;Hong, Seung Hwan;Park, Il Suk;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • As 3D geospatial information is demanded, terrestrial laser scanners which can obtain 3D model of objects have been applied in various fields such as Building Information Modeling (BIM), structural analysis, and disaster management. To acquire precise data, performance evaluation of a terrestrial laser scanner must be conducted. While existing 3D surveying equipment like a total station has a standard method for performance evaluation, a terrestrial laser scanner evaluation technique for users is not established. This paper categorizes and analyzes error sources which generally occur in terrestrial laser scanning. In addition to the prior researches about categorizing error sources of terrestrial Laser scanning, this paper evaluates the error sources by the actual field tests for the smooth in-situ applications.The error factors in terrestrial laser scanning are categorized into interior error caused by mechanical errors in a terrestrial laser scanner and exterior errors affected by scanning geometry and target property. Each error sources were evaluated by simulation and actual experiments. The 3D coordinates of observed target can be distortedby the biases in distance and rotation measurement in scanning system. In particular, the exterior factors caused significant geometric errors in observed point cloud. The noise points can be generated by steep incidence angle, mixed-pixel and crosstalk. In using terrestrial laser scanner, elaborate scanning plan and proper post processing are required to obtain valid and accurate 3D spatial information.

Low-Complexity Handheld 3-D Scanner Using a Laser Pointer (단일 레이저 포인터를 이용한 저복잡도 휴대형 3D 스캐너)

  • Lee, Kyungme;Lee, Yeonkyung;Park, Doyoung;Yoo, Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.458-464
    • /
    • 2015
  • This paper proposes a portable 3-D scanning technique using a laser pointer. 3-D scanning is a process that acquires surface information from an 3-D object. There have been many studies on 3-D scanning. The methods of 3-D scanning are summarized into some methods based on multiple cameras, line lasers, and light pattern recognition. However, those methods has major disadvantages of their high cost and big size for portable appliances such as smartphones and digital cameras. In this paper, a 3-D scanning system using a low-cost and small-sized laser pointer are introduced to solve the problems. To do so, we propose a 3-D localization technique for a laser point. The proposed method consists of two main parts; one is a fast recognition of input images to obtain 2-D information of a point laser and the other is calibration based on the least-squares technique to calculate the 3-D information overall. To verified our method, we carry out experiments. It is proved that the proposed method provides 3-D surface information although the system is constructed by extremely low-cost parts such a chip laser pointer, compared to existing methods. Also, the method can be implemented in small-size; thus, it is enough to use in mobile devices such as smartphones.

Laser Scanning Path Generation for the Fabrication of Large Size Shape

  • Choi, Kyung-Hyun;Choi, Jae-Won;Doh, Yang-Hoe;Kim, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2175-2178
    • /
    • 2005
  • Selective Laser Sintering(SLS) method is one of Rapid Prototyping(RP) technologies. It has been used to fabricate desirable part to sinter powder and stack the fabricated layer. Since the sintering process occurs using infrared laser having high thermal energy, shrinkage and curling of the fabricated part occurs according to thermal distribution. Therefore, the fast scanning path generation is necessary to eliminate the factors of quality deterioration. In case of fabricating larger size parts, the unique scanning device and scanning path generation should be considered. In this paper, the development of SLS machines being capable of large size fabrication(800${\times}$1000${\times}$800 mm, W${\times}$D${\times}$H) will be addressed. The dual laser system and the unique scanning device have been designed and built, which employ CO2 lasers and dynamic 3-axis scanners. The developed system allows scanning a larger planar surface with the desired laser spot size. Also, to generate the fast scanning paths, adaptive path generation is needed with respect to the shape of each layer, and not simply x, y scanning, but the scanning of arbitrary direction should be enabled. To evaluate the suggested method, the complex part will be used for the experiment fabrication.

  • PDF

Laser projection system that uses a 2D MEMS scanner

  • Seo, Jung-Hoon;Choi, Jung-Hwan;Kim, Yong-Ki;Yi, Jong-Kwon;Kwon, Jae-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.478-480
    • /
    • 2009
  • This experiment implemented a laser projection system that used the 2D MEMS scanner as the driving method for the display device. The 2D MEMS scanner, which can scan the images horizontally and vertically, was applied to drive the projection system using the interlaced scanning method. The laser was directly modulated to implement the grayscale and the images were WVGA resolution quality.

  • PDF

A Study on the COntour Machining of Text using CNC Laser Machine (CNC레이저 가공기를 이용한 활자체 가공에 관한 연구)

  • 구영회
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.554-559
    • /
    • 1999
  • The purpose of this study is the machining of texture shapes by the contour fitting data. The hardware of the system comprises PC and scanning system, CO2 laser machine. There are four steps, (1) text image loading using scanning shapes or 2D image files, (2) generation of contour fitting data by the line and arc, cubic Bezier curve, (3) generation of NC code from the contouring fitting data, (4) machining by the DNC system. It is developed a software package, with which can conduct a micro CAM system of CNC laser machine in the PC without economical burden.

  • PDF

Three-dimensional Geometrical Scanning System Using Two Line Lasers (2-라인 레이저를 사용한 3차원 형상 복원기술 개발)

  • Heo, Sang-Hu;Lee, Chung Ghiu
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.165-173
    • /
    • 2016
  • In this paper, we propose a three-dimensional (3D) scanning system based on two line lasers. This system uses two line lasers with different wavelengths as light sources. 532-nm and 630-nm line lasers can compensate for missing scan data generated by geometrical occlusion. It also can classify two laser planes by using the red and green channels. For automatic registration of scanning data, we control a stepping motor and divide the motor's rotational degree of freedom into micro-steps. To this end, we design a control printed circuit board for the laser and stepping motor, and use an image processing board. To compute a 3D point cloud, we obtain 200 and 400 images with laser lines and segment lines on the images at different degrees of rotation. The segmented lines are thinned for one-to-one matching of an image pixel with a 3D point.

Simulation based Target Geometry Determination Method for Extrinsic Calibration of Multiple 2D Laser Scanning System (다중 2D 레이저 스캐너 시스템의 외부 표정요소 캘리브레이션을 위한 시뮬레이션 기반 표적 배치 결정 기법)

  • Ju, Sungha;Yoon, Sanghyun;Park, Sangyoon;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.443-449
    • /
    • 2018
  • Acquiring indoor point cloud, using SLAM (Simultaneous Localization and Mapping) based mobile mapping system, is an element progress for development of as-build BIM (Building Information Model) for the maintenance of the building. In this research we proposed a simulation-based target geometry determination for extrinsic calibration of multiple 2D laser scanning mobile system. Four different types of calibration sites were designed: (1) circle type; (2) rectangle type; (3) double circle type; and (4) double rectangle type. Based on the measurement values obtained from each simulated calibration site geometry, least squares solution based extrinsic calibration was derived. As a result, the rectangle type geometry is most suitable for extrinsic calibration of this system. Also, correlation values between extrinsic calibration parameters were high, and calibration results were distinct according to the calibration sites.

Monitoring of Grinding Wheel Wear in Surface Grinding Process by Using Laser Scanning Micrometer

  • Ju, Kwang-Hun;Kim, Hyun-Soo;Hong, Seong-Wook;Park, Chun-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.81-86
    • /
    • 2001
  • This paper deals with the monitoring of grinding wheel wear in surface grinding process. A monitoring system, which makes use of a laser scanning micrometer, is developed to measure the circumferential shape as well as the axial profile of grinding wheel. The monitoring system is applied to surface grinding processes. The experimental results show that the developed monitoring system is useful not only for monitoring the amount of wear in grinding wheel but also for evaluation the quality of ground surface and determining proper derssing time for the grinding wheel.

  • PDF