• Title/Summary/Keyword: 2D Imaging

Search Result 1,157, Processing Time 0.038 seconds

Imaging of Fractures and Tunnel by 3-D ERT (전기비저항 토모그래피에 의한 파쇄대 및 터널의 3차원 영상화)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.302-309
    • /
    • 2008
  • ERT imaging, especially 3-D method, is a very powerful means to obtain a very high resolution image of the subsurface for geotechnical or hydrogeological problems. In this paper, we introduce two examples of successful case histories, where the imaging targets were three-dimensional. First example is the case of 3-D fracture imaging for hydrogeologic application. In this example, the borehole deviation was a critical problem in the ERT imaging and we could obtain real 3-D attitude of fracture system by including the borehole deviation in the inversion. In the second case, we did field experiment to image the empty tunnel with the size of $2m{\times}2m$ and the target was very clearly imaged in 3-D space. In these examples, we could show that 3-D ERT imaging is a very powerful tool for the 3-D subsurface imaging and the method can provide enhanced imaging capabilities especially for the 3-D targets such as fractures and cavities or tunnel.

Two-dimensional / Three-dimensional convertible modified integral imaging system using functional polarizing film (기능성 편광필름을 이용한 2차원/3차원 전환가능 변형 집적 영상 시스템)

  • Song, Byeong-Seop;Park, Sun-Gi;Min, Seong-Uk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.6-7
    • /
    • 2009
  • We proposed the two-dimensional (2D) / three-dimensional (3D) convertible modified integral imaging system using functional polarizing film named $imazer^{TM}$, which transfer or scatter the incident light ray according to the polarizing direction of ray. When the incident light rays transfer to $imazer^{TM}$, the rays generate 3D image through the process of the modified integral imaging system. However, the scattered light rays generate 2D image through the simple backlight scheme when the incident rays are scattered by the film. The proposed method can be implemented the partial 3D display system without any mechanical movements. In this paper, we propose and verify our system using some basic experiments and its results.

  • PDF

Keyhole Imaging Combined Phase Contrast MR Angiography Technique (Keyhole Imaging기법을 적용한 위상대조도 자기공명 혈관조영기법)

  • Lee, D.H.;Hong, C.P.;Han, B.S.;Lee, M.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.72-77
    • /
    • 2012
  • Phase Contrast MR Angiography(PC MRA) is excellent MRA technique for measuring the velocity of vessels in the human body. PC MRA need to at least four images for angiogram reconstruction and it caused longer scan time. Therefore, we used keyhole imaging combined PC MRA to reduce the scan time. However, keyhole imaging can lead the erroneous effects as loss of phase information or frequency discontinuous. In this study, we applied the keyhole imaging combined 2D PC MRA for improving the temporal resolution and also measured the velocity to evaluate the accuracy of phase information. We used 0.32T MRI scanner(Magfinder II, Scimedix, Korea). Using the 2D PC MRA pulse sequence, the vascular images for a human brain targeted on the Superior Sagittal Sinus(SSS) were obtained. We applied tukey window function for keyhole images to minimize the ringing artifact and erroneous factors that are induced frequency discontinuous and phase information loss. We also applied zero-padded algorithm to peripheral missing k-space lines to compare keyhole imaging results and the artifact power(AP) value was measured on the complex difference images to validate the image quality. Consider as based on our results, heavy image distortions and artifacts were shown until using at least 50% keyhole factor. Using above the 50% keyhole factors are shown well reconstructed and matched for magnitude images and velocity information measurements. In conclusion, we confirmed the image quality and velocity information of keyhole technique combined 2D PC MRA. Especially, measured velocity information through the keyhole imaging combination was similar to the velocity information of full sampled k-space image despite of frequency discontinuous and phase information loss in the keyhole imaging reconstruction process. Consequently, the keyhole imaging combined 2D PC MRA will give some clinical usefulness and advantages as improving the temporal resolution and measuring the velocity information via selecting the appropriate keyhole factor at low tesla MRI system.

Depth Extraction of Integral Imaging Using Correlation (상관관계를 활용한 집적 영상의 깊이 추출 방법)

  • Kim, Youngjun;Cho, Ki-Ok;Kim, Cheolsu;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1369-1375
    • /
    • 2016
  • In this paper, we present a depth extraction method of integral imaging using correlation between elemental images with phase only filter. Integral imaging is a passive three-dimensional (3D) imaging system records ray information of 3D objects through lenslet array by 2D image sensor, and displays 3D images by using the similar lenslet array. 2D images by lenslet array have different perspectives. These images are referred to as elemental images. Since the correlation can be calculated between elemental images, the depth information of 3D objects can be extracted. To obtain high correaltion between elemental images effectively, in this paper, we use phase only filter. Using this high correlation, the corresponding pixels between elemental images can be found so that depth information can be extracted by computational reconstruction technique. In this paper, to prove our method, we carry out optical experiment and calculate Peak Sidelobe Ratio (PSR) as a correlation metric.

N(2D) Product Velocity Mapped Imaging in the VUV Photolysis of Nitrous Oxide at 118.2 nm

  • Cosofret, Bogdan R.;Lambert, H. Mark;Houston, Paul L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.179-183
    • /
    • 2002
  • Resonance-enhanced multiphoton ionization with time-of-flight product imaging of the $N(^2D)$ atoms has been used to study the $N_2O$ photodissociation at 118.2 nm and the two-photon dissociation at 268.9 nm. These imaging experiments allowed the determination of the total kinetic energy distribution of the $NO(X^2{\prod})$ and $N(^2D_{5/2})$ products. The $NO(X^2{\prod})$ fragments resulting from the photodissociation processes are produced in highly vibrationally excited states. The two-photon photodissociation process yields a broad $NO(X^2{\prod})$ vibrational energy distribution, while the 118.2 nm dissociation appears to produce a vibrational distribution sharply peaked at $NO(X^2{\prod},\;{\nu}=14)$.

Evaluation of Clinical Effectiveness of 3D Digital Endoscopic Image (3차원 디지탈 내시경 영상의 임상적 효용성 평가)

  • Song, Chul-Gyu;Kim, Kyeong-Seop;Kim, Nam-Gyun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.5 no.1
    • /
    • pp.26-31
    • /
    • 2002
  • This paper represents the design of 3D endoscopic video system in order to improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. Minimally invasive techniques have set new standards in all surgical may experience less post-operative discomfort, shorter hospitalization, and quicker recuperation. Finally, the aim of the present study was to determine the influence of 2D and 3D video imaging on defined tasks on a laparoscopic trainer.

  • PDF

Evaluation of Morphological Changes in Degenerative Cartilage Using 3-D Optical Coherence Tomography

  • Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.98-102
    • /
    • 2008
  • Optical Coherence Tomography (OCT) is an important noninvasive medical imaging technique that can reveal subsurface structures of biological tissue. OCT has demonstrated a good correlation with histology in sufficient resolution to identify morphological changes in articular cartilage to differentiate normal through progressive stages of degenerative joint disease. Current OCT systems provide individual cross-sectional images that are representative of the tissue directly under the scanning beam, but they may not fully demonstrate the degree of degeneration occurring within a region of a joint surface. For a full understanding of the nature and degree of cartilage degeneration within a joint, multiple OCT images must be obtained and an overall assessment of the joint surmised from multiple individual images. This study presents frequency domain three-dimensional (3-D) OCT imaging of degenerative joint cartilage extracted from bovine knees. The 3-D OCT imaging of articular cartilage enables the assembly of 126 individual, adjacent, rapid scanned OCT images into a full 3-D image representation of the tissue scanned, or these may be viewed in a progression of successive individual two-dimensional (2-D) OCT images arranged in 3-D orientation. A fiber-based frequency domain OCT system that provides cross-sectional images was used to acquire 126 successive adjacent images for a sample volume of $6{\times}3.2{\times}2.5\;mm^3$. The axial resolution was $8\;{\mu}m$ in air. The 3-D OCT was able to demonstrate surface topography and subsurface disruption of articular cartilage consistent with the gross image as well as with histological cross-sections of the specimen. The 3-D OCT volumetric imaging of articular cartilage provides an enhanced appreciation and better understanding of regional degenerative joint disease than may be realized by individual 2-D OCT sectional images.

Efficient and Robust Correspondence Detection between Unbalanced Stereo Images

  • Kim, Yong-Ho;Kim, Jong-Su;Lee, Sangkeun;Choi, Jong-Soo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • This paper presents an efficient and robust approach for determining the correspondence between unbalanced stereo images. The disparity vectors were used instead of feature points, such as corners, to calculate a correspondence relationship. For a faster and optimal estimation, the vectors were classified into several regions, and the homography of each region was calculated using the RANSAC algorithm. The correspondence image was calculated from the images transformed by each homography. Although it provided good results under normal conditions, it was difficult to obtain reliable results in an unbalanced stereo pair. Therefore, a balancing method is also proposed to minimize the unbalance effects using the histogram specification and structural similarity index. The experimental results showed that the proposed approach outperformed the baseline algorithms with respect to the speed and peak-signal-to-noise ratio. This work can be applied to practical fields including 3D depth map acquisition, fast stereo coding, 2D-to-3D conversion, etc.

  • PDF

3D Gaze Estimation and Interaction Technique (3차원 시선 추출 및 상호작용 기법)

  • Ki, Jeong-Seok;Jeon, Kyeong-Won;Kim, Sung-Kyu;Sohn, Kwang-Hoon;Kwon, Yong-Moo
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.431-440
    • /
    • 2006
  • There are several researches on 2D gaze tracking techniques for the 2D screen for the Human-Computer Interaction. However, the researches for the gaze-based interaction to the stereo images or contents are not reported. The 3D display techniques are emerging now for the reality service. Moreover, the 3D interaction techniques are much more needed in the 3D contents service environments. This paper addresses gaze-based 3D interaction techniques on stereo display, such as parallax barrier or lenticular stereo display. This paper presents our researches on 3D gaze estimation and gaze-based interaction to stereo display.

Usefulness of MR Imaging for Diseases of the Small Intestine: Comparison with CT

  • Ji-Hoon Kim;Hyun Kwon Ha;Min Jee Sohn;Byung Suck Shin;Young Suk Lee;Soo Yoon Chung;Pyo Nyun Kim;Moon-Gyu Lee;Yong-Ho Auh
    • Korean Journal of Radiology
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • Objective: To evaluate the usefulness of MR imaging for diseases of the small intestine, emphasizing a comparison with CT. Materials and Methods: Thirty-four patients who underwent both CT and MR imaging using FLASH 2D and HASTE sequences were analyzed. All patients had various small bowel diseases with variable association of peritoneal lesions. We compared the detectabilities of CT and MR imaging using different MR pulse sequences. The capability for analyzing the characteristics of small intestinal disease was also compared. Results: MR imaging was nearly equal to CT for detecting intraluminal or peritoneal masses, lesions in the bowel and mesentery, and small bowel obstruction, but was definitely inferior for detecting omental lesions. The most successful MR imaging sequence was HASTE for demonstrating bowel wall thickening, coronal FLASH 2D for mesenteric lesions, and axial FLASH 2D for omental lesions. MR imaging yielded greater information than CT in six of 12 inflammatory bowel diseases, while it was equal to CT in six of seven neoplasms and inferior in five of seven mesenteric ischemia. In determining the primary causes of 15 intestinal obstructions, MR imaging was correct in 11 (73%) and CT in nine (60%) patients. Conclusion: MR imaging can serve as an alternative diagnostic tool for patients with suspected inflammatory bowel disease, small intestinal neoplasm or obstruction.

  • PDF