• 제목/요약/키워드: 26 fpi Low-fin tube

검색결과 8건 처리시간 0.017초

낮은 핀관과 Turbo-C 촉진관에서 R245fa의 외부 응축 열전달계수 (External Condensation Heat Transfer Coefficients of R245fa on Low Fin and Turbo-C Tubes)

  • 심윤보;박기정;정동수
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.167-175
    • /
    • 2009
  • In this study, condensation heat transfer coefficients(HTCs) of R22, R123, R134a and R245fa are measured on both 26fpi low fin and Turbo-C tubes. All data are taken at the vapor temperature of $39^{\circ}C$ with a wall subcooling of $3{\sim}8^{\circ}C$. Test results show that HTCs of the newly developed low vapor pressure alternative refrigerant, R245fa, are $7.8{\sim}9.2%$ and $10.3{\sim}18.6%$ higher than those of R123 for 26fpi low fin tube and Turbo-C tube respectively. For all refrigerants tested, HTCs of Turbo-C enhanced tube are higher than those of 26fpi low fin tube. For the low fin tube, Beatty and Katz's prediction equation yielded 20% deviation for all fluids. The heat transfer enhancement ratio of R245fa on the Turbo-C tube is $5.9{\sim}6.4$ while that of R123 is $5.7{\sim}5.9$. From the view point of environmental safety and condensation heat transfer, R245fa is a long term candidate to replace R123 currently used in centrifugal chillers.

가연성 냉매의 외부 응축 열전달에 관한 연구 (A Study of External Condensation Heat Transfer of Flammable Refrigerants)

  • 배동수;하종철;유길상;정동수
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.522-529
    • /
    • 2004
  • In this study, external condensation heat transfer coefficients (HTCs) of flammable refrigerants of propylene, propane, isobutane, butane, DME, and HFC32 were measured on a horizontal plain tube, 26 fpi low fin tube, and Turbo-C tube. All data were taken at the temperature of 39$^{\circ}C$ with a wall subcooling of 3∼8$^{\circ}C$. Test results showed a typical trend that condensation HTCs of flammable refrigerants decrease with increasing wall subcooling. HFC32 had the highest HTCs among the tested refrigerants showing 44% higher HTCs than those of HCFC22 while DME showed 28% higher HTCs than those of HCFC22. HTCs of propylene and butane were similar to those of HCFC22 while those of propane and isobutane were similar to those of HFC134a. Based upon the tested data, Nusselt's equation is modified to predict the plain tube data within a deviation of 3%. For 26 fpi low fin tube, Beatty and Katz equation predicted the data within a deviation of 7.3% for all flammable refrigerants tested. The heat transfer enhancement factors for the 26 fpi low fin and Turbo-C tubes were 4.6∼5.7 and 4.7∼6.9 respectively for the refrigerants tested indicating that the performance of Turbo-C tube is the best among the tubes tested.

평활관과 낮은 핀관에서 R245fa의 풀 비등 열전달계수 (Pool Boiling Heat Transfer Coefficient of R245fa on the Plain Tube and the Low Fin Tube)

  • 박기정;이요한;임병덕;정동수
    • 설비공학논문집
    • /
    • 제23권3호
    • /
    • pp.208-215
    • /
    • 2011
  • In this work, pool boiling heat transfer coefficients(HTCs) of R22, R123, R134a, and R245fa are measured on both horizontal plain and 26 fpi low fin tubes. The pool boiling temperature is maintained at $7^{\circ}C$ and heat flux is varied from 80 $kW/m^2$ to 10 $kW/m^2$ with an interval of 10 $kW/m^2$. Wall temperatures are measured directly by thermocouples inserted through holes of 0.5 mm diameter. Test results show that HTCs of high vapor pressure refrigerants are usually higher than those of low pressure fluids in both plain and low fin tubes. On a plain tube, HTCs of R245fa are 23.3% higher than those of R123 while on a 26 fpi low fin tube, HTCs of R245fa are 46.3% higher than those of R123. The fin effect is more prominent with low vapor pressure refrigerants than with high vapor pressure ones due to a sweeping effect.

열전달 촉진관에서 HFC32/HFC152a 혼합냉매의 외부 응축열전달계수 (External Condensation Heat Transfer Coefficients of HFC32/HFC152a Mixtures on Enhanced Tubes)

  • 이요한;강동규;김현주;이호생;정동수
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.315-321
    • /
    • 2014
  • In this study, external condensation heat transfer coefficients (HTCs) of two non-azeotropic refrigerant mixtures of HFC32/HFC152a at various compositions were measured on both 26 fpi low-fin and Turbo-C enhanced tubes, of 19.0 mm outside diameter. All data were taken at the vapor temperature of $39^{\circ}C$, with a wall subcooling of 3~8 K. Test results showed that the HTCs of the tested mixtures on the enhanced tubes were much lower than the ideal values calculated by mass fraction weighting of the pure component HTCs. Also, the reduction of HTCs due to the diffusion vapor film was much larger than that of a plain tube. Unlike HTCs of pure fluids, HTCs of the mixtures measured on enhanced tubes increased, as the wall subcooling increased, which was due to the sudden break-up of the vapor diffusion film with an increase in wall subcooling. Finally, the heat transfer enhancement ratios for mixtures were found to be much lower, than those of pure fluids.

낮은 핀관의 형상이 LiBr 수용액의 풀 비등에 미치는 영향에 대한 실험적 연구 (An Experimental Study on the Effect of Low Fin Tube Geometry on Pool Boiling of a LiBr Solution)

  • 김내현
    • 대한기계학회논문집B
    • /
    • 제39권7호
    • /
    • pp.591-598
    • /
    • 2015
  • 본 연구에서는 핀 핏치와 핀 높이가 다른 7종류의 낮은 핀관에 대하여 LiBr 농도 0%.~50%, 열유속 $20kW/m^2{\sim}40kW/m^2$, 포화압력 7.38kPa~101.3kPa에서 풀 비등 실험을 수행하였다. 실험 범위에서 최적 낮은 핀관 형상은 핀 핏치 26fpi, 핀 높이 1.8mm로 나타났다. 핀 핏치가 너무 넓으면 전열 면적이 감소하고 핀 핏치가 너무 좁으면 기포의 성장 및 이탈이 원활하지 못하게 되어 최적 핀 핏치가 존재한다. 포화압력이 낮아질수록, LiBr 농도가 증가할수록 열전달계수는 감소하였다. 이는 포화압력이 낮아질수록 기포의 이탈직경은 증가하고 이탈 빈도는 감소하기 때문이다. 또한 LiBr 농도가 증가하면 포화온도는 증가하고 물질확산율은 감소하는데 이에 따라 기포의 성장속도가 감소하고 따라서 열전달계수가 감소하게 된다. 낮은 핀관의 열전달계수는 모든 포화압력과 농도에서 평활관의 열전달계수보다 크게 나타났다. 본 실험자료를 기반으로 상관식을 제시하였다.

열전달 촉진관에서 신냉매의 풀비등 열전달계수 (Pool Boiling Heat Transfer Coefficients of New Refrigerants on Various Enhanced Tubes)

  • 박진석;김종곤;정동수;김영일
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.710-719
    • /
    • 2001
  • Pool boiling heat transfer coefficients (HTCs) of HCFC123, HFC134a, HCFC22, HFC407C, HFC410A and HFC32 wre measured on a horizontal smooth tube, 26 fpi low fin tube, Turbo-B and Thermoexcel-E enhanced tubes. AN experimental apparatus was designed such that all tubes heated by cartridge heaters could be installed at the same time to save the refrigerant. Data were taken in the pool of $7^{\circ}C$ with the heat flux decreasing from 80 kW/$m^2\;to\;5kW/m^2$. Test results showed that HTCs of pure refrigerants and those of a azeotrope were greatly influenced by reduced pressure. HTCs of HFC407C were 21~25% lower than those of HCFC22 due to mass transfer resistance. For all refrigerants, enhanced tubes with sub-surface and sub-tunnels showed the largest heat transfer enhancement. Especially the largest heat enhancement was obtained for HCFC123 whose reduced pressure is the lowest among al the refrigerants tested. This indicates that either Turbo-B or Thermoexcel-E enhanced tube would be the best choice when used with a low vapor pressure refrigerant.

  • PDF

열전달 촉진관에서 R22 대체냉매 및 R134a의 포화증기 온도변화에 따른 외부 응축 열전달계수에 관한 연구 (External Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants and R134a According to the Saturated Vapor Temperature Change on an Enhanced Tube)

  • 유길상;황지환;박기정;정동수
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.981-989
    • /
    • 2005
  • In this study, external condensation heat transfer coefficients (HTCs) are measured on a low fin tube and Turbo-C tubes at the saturated vapor temperature of $30^{\circ}C$, $39^{\circ}C$, and $50^{\circ}C$ for R22, R410A, R407C and R134a with the wall subcooled at $3{\~}8^{\circ}C$. The HTCs of all refrigerants decreased as increasing the saturation temperature from $30^{\circ}C$ to $50^{\circ}C$. This trend is due to better thermodynamic properties of the liquid phase at low temperature Beatty and Katz's prediction yielded a $20.0\%$ deviation for the low fin tube data. The heat transfer enhancement factors for the 26 fpi low fin tube and Turbo-C tubes are 4.0${\~}$5.5 and 3.0${\~}$8.1 respectively for the refrigerants tested. Finally the performance of Turbo-C tube is better than that of the low fin tube.

열전달 촉진관에서 탄화수소계 냉매의 풀비등 열전달계수 (Pool Boiling Heat Transfer Coefficients of Hydrocarbon Refrigerants on Various Enhanced Tubes)

  • 박기정;정동수
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.1017-1024
    • /
    • 2006
  • In this work, pool boiling heat transfer coefficients (HTCs) of five hydrocarbon refrigerants of propylene, propane, isobutane, butane and dimethylether (DME) were measured at the liquid temperature of $7^{\circ}C$ on a 26 fpi low fin tube, Turbo-B, and Thermoexcel-E tubes. All data were taken from 80 to $10kW/m^2$ in the decreasing order of heat flux. The data of hydrocarbon refrigerants showed a typical trend that nucleate boiling HTCs obtained on enhanced tubes also increase with the vapor pressure. Fluids with lower reduced pressure such as DME, isobutane, and butane took more advantage of the heat transfer enhancement mechanism of enhanced tubes than those enhancement ratios of $2.3\sim9.4$ among the tubes tested due to its sub-channels and re-entrant cavities.