• 제목/요약/키워드: 24 scenarios

검색결과 236건 처리시간 0.024초

Sensitivity assessment for climate change on Daecheong Dam Basin stream flow (기후변화에 따른 대청댐 상류유역의 유출 민감도 분석)

  • Seo, Hyeong-Deok;Jeong, Sang-Man;Han, Kyu-Ha;Shin, Kwang-Seob
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.695-698
    • /
    • 2008
  • The SWAT model was used to assess the impacts of potential future climate change on the hydrology of the Upper Geum River Basin(UGRB). Calibration and validation of SWAT were performed on a monthly basis for 1982-1995 and 1996-2005, respectively. The impact of ten 15-year(1988-2002) scenarios were then analyzed relative to a scenario baseline. Among them, scenario 1-6 were set to show the sensitivity response. A doubling of atmospheric CO2 concentration was predicted to result in an maximum monthly flow increase of 11 percent. Non-linear impacts were predicted among precipitation change scenarios of -42, -17, 17, and 42 percent, which resulted in average annual flow changes in UGRB of -55, -24, 26, and 65 percent.

  • PDF

Autonomous pothole detection using deep region-based convolutional neural network with cloud computing

  • Luo, Longxi;Feng, Maria Q.;Wu, Jianping;Leung, Ryan Y.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.745-757
    • /
    • 2019
  • Road surface deteriorations such as potholes have caused motorists heavy monetary damages every year. However, effective road condition monitoring has been a continuing challenge to road owners. Depth cameras have a small field of view and can be easily affected by vehicle bouncing. Traditional image processing methods based on algorithms such as segmentation cannot adapt to varying environmental and camera scenarios. In recent years, novel object detection methods based on deep learning algorithms have produced good results in detecting typical objects, such as faces, vehicles, structures and more, even in scenarios with changing object distances, camera angles, lighting conditions, etc. Therefore, in this study, a Deep Learning Pothole Detector (DLPD) based on the deep region-based convolutional neural network is proposed for autonomous detection of potholes from images. About 900 images with potholes and road surface conditions are collected and divided into training and testing data. Parameters of the network in the DLPD are calibrated based on sensitivity tests. Then, the calibrated DLPD is trained by the training data and applied to the 215 testing images to evaluate its performance. It is demonstrated that potholes can be automatically detected with high average precision over 93%. Potholes can be differentiated from manholes by training and applying a manhole-pothole classifier which is constructed using the convolutional neural network layers in DLPD. Repeated detection of the same potholes can be prevented through feature matching of the newly detected pothole with previously detected potholes within a small region.

FedGCD: Federated Learning Algorithm with GNN based Community Detection for Heterogeneous Data

  • Wooseok Shin;Jitae Shin
    • Journal of Internet Computing and Services
    • /
    • 제24권6호
    • /
    • pp.1-11
    • /
    • 2023
  • Federated learning (FL) is a ground breaking machine learning paradigm that allow smultiple participants to collaboratively train models in a cloud environment, all while maintaining the privacy of their raw data. This approach is in valuable in applications involving sensitive or geographically distributed data. However, one of the challenges in FL is dealing with heterogeneous and non-independent and identically distributed (non-IID) data across participants, which can result in suboptimal model performance compared to traditionalmachine learning methods. To tackle this, we introduce FedGCD, a novel FL algorithm that employs Graph Neural Network (GNN)-based community detection to enhance model convergence in federated settings. In our experiments, FedGCD consistently outperformed existing FL algorithms in various scenarios: for instance, in a non-IID environment, it achieved an accuracy of 0.9113, a precision of 0.8798,and an F1-Score of 0.8972. In a semi-IID setting, it demonstrated the highest accuracy at 0.9315 and an impressive F1-Score of 0.9312. We also introduce a new metric, nonIIDness, to quantitatively measure the degree of data heterogeneity. Our results indicate that FedGCD not only addresses the challenges of data heterogeneity and non-IIDness but also sets new benchmarks for FL algorithms. The community detection approach adopted in FedGCD has broader implications, suggesting that it could be adapted for other distributed machine learning scenarios, thereby improving model performance and convergence across a range of applications.

Analysis of MANET's Routing Protocols, Security Attacks and Detection Techniques- A Review

  • Amina Yaqoob;Alma Shamas;Jawwad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.23-32
    • /
    • 2024
  • Mobile Ad hoc Network is a network of multiple wireless nodes which communicate and exchange information together without any fixed and centralized infrastructure. The core objective for the development of MANET is to provide movability, portability and extensibility. Due to infrastructure less network topology of the network changes frequently this causes many challenges for designing routing algorithms. Many routing protocols for MANET have been suggested for last few years and research is still going on. In this paper we review three main routing protocols namely Proactive, Reactive and Hybrid, performance comparison of Proactive such as DSDV, Reactive as AODV, DSR, TORA and Hybrid as ZRP in different network scenarios including dynamic network size, changing number of nodes, changing movability of nodes, in high movability and denser network and low movability and low traffic. This paper analyzes these scenarios on the performance evaluation metrics e.g. Throughput, Packet Delivery Ratio (PDR), Normalized Routing Load(NRL) and End To-End delay(ETE).This paper also reviews various network layer security attacks challenge by routing protocols, detection mechanism proposes to detect these attacks and compare performance of these attacks on evaluation metrics such as Routing Overhead, Transmission Delay and packet drop rates.

Avoidable Burden of Risk Factors for Serious Road Traffic Crashes in Iran: A Modeling Study

  • Shadmani, Fatemeh Khosravi;Mansori, Kamyar;Karami, Manoochehr;Zayeri, Farid;Shadman, Reza Khosravi;Hanis, Shiva Mansouri;Soori, Hamid
    • Journal of Preventive Medicine and Public Health
    • /
    • 제50권2호
    • /
    • pp.83-90
    • /
    • 2017
  • Objectives: The aim of this study was to model the avoidable burden of the risk factors of road traffic crashes in Iran and to prioritize interventions to reduce that burden. Methods: The prevalence and the effect size of the risk factors were obtained from data documented by the traffic police of Iran in 2013. The effect size was estimated using an ordinal regression model. The potential impact fraction index was applied to calculate the avoidable burden in order to prioritize interventions. This index was calculated for theoretical, plausible, and feasible minimum risk level scenarios. The joint effects of the risk factors were then estimated for all the scenarios. Results: The highest avoidable burdens in the theoretical, plausible, and feasible minimum risk level scenarios for the non-use of child restraints on urban roads were 52.25, 28.63, and 46.67, respectively. In contrast, the value of this index for speeding was 76.24, 37.00, and 62.23, respectively, for rural roads. Conclusions: On the basis of the different scenarios considered in this research, we suggest focusing on future interventions to decrease the prevalence of speeding, the non-use of child restraints, the use of cell phones while driving, and helmet disuse, and the laws related to these items should be considered seriously.

Integrated Scenario Authoring Method using Mission Impact Analysis Tool due to Cyber Attacks (사이버공격에 의한 임무영향 분석 도구를 이용한 통합시나리오 저작 방법)

  • Yonghyun Kim;Donghwa Kim;Donghwan Lee;Juyoub Kim;Myung Kil Ahn
    • Journal of Internet Computing and Services
    • /
    • 제24권6호
    • /
    • pp.107-117
    • /
    • 2023
  • It must be possible to assess how combat actions taking place in cyberspace affect the military's major mission systems and weapon systems. In order to analyze the mission impact caused by a cyber attack through cyber M&S, the target mission system and cyber warfare elements must be built as a model and a scenario for simulation must be authored. Many studies related to mission impact analysis due to cyber warfare have been conducted focusing on the United States, and existing studies have authored separate scenarios for physical battlefields and cyber battlefields. It is necessary to build a simulation environment that combines a physical battlefield model and a cyber battlefield model, and be able to integrate and author mission scenarios and cyber attack/defense scenarios. In addition, the physical battlefield and cyber battlefield are different work areas, so authoring two types of scenarios for simulation is very complicated and time-consuming. In this paper, we propose a method of using mission system information to prepare the data needed for scenario authoring in advance and using the pre-worked data to author an integrated scenario. The proposed method is being developed by reflecting it in the design of the scenario authoring tool, and an integrated scenario authoring in the field of counter-fire warfare is being performed to prove the proposed method. In the future, by using a scenario authoring tool that reflects the proposed method, it will be possible to easily author an integrated scenario for mission impact analysis in a short period of time.

Impact of Water Management Techniques on Agricultural Reservoir Water Supply (관개지구 물관리기법에 따른 농업용 저수지 공급량 평가)

  • Ryu, Jeong Hoon;Song, Jung Hun;Kang, Seok Man;Jang, Jung Seok;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제60권2호
    • /
    • pp.121-132
    • /
    • 2018
  • Along with climate change, it is reported that the extreme climate events such as severe drought could cause difficulties of agricultural water supply. To minimize such damages, it is necessary to secure the agricultural water resources by using or saving the amount of irrigation water efficiently. The objectives of this study were to develop paddy water management scenarios and to evaluate their effectiveness on water saving. Three water management scenarios (a) deep irrigation with ponding depth of 20~80 mm (control, CT), (b) no/intermittent irrigation until paddy cracks (water management A, WM-A), and (c) intermittent irrigation with ponding depth under 20 mm (water management B, WM-B) were developed. Water saving effects were analyzed using monitored data from experimental paddy fields, and agricultural water supply was analyzed on a reservoir-scale using MASA model. The observed irrigation amounts were reduced by 21 % and 17 % for WM-A and WM-B compared to CT, respectively, and mainly occurred by the increase of effective rainfall. The simulation results showed that water management scenarios could reduce irrigation by 21~51 % and total inflow by 10~24 % compared to CT. The long-term simulated water level change of agricultural reservoir resulted in the decrease of dead level occurrence for WM-A and WM-B. The study results showed that WT-A and WT-B have more benefit than CT in the aspect of agricultural reservoir water supply.

Future hydrological changes in Jeju Island based on CMIP6 climate change scenarios (CMIP6 기후변화 시나리오에 따른 제주도 지역의 미래 수문변화 전망)

  • Kim, Chul-Gyum;Cho, Jaepil;Lee, Jeong Eun;Chang, Sunwoo
    • Journal of Korea Water Resources Association
    • /
    • 제56권11호
    • /
    • pp.737-749
    • /
    • 2023
  • In this study, we analyzed the hydrological impacts of future climate change on Jeju Island using SSP-based climate change scenarios from 18 climate models and watershed modeling (SWAT-K). Despite discrepancies among climate models, we generally observed an increase in evapotranspiration due to rising future temperatures. Furthermore, a significant increase in runoff and recharge was noted due to increased precipitation. These increasing trends were particularly pronounced in the SSP5-8.5 scenario, and differences among GCM models became more significant in the late 21 century. When compared to the historical period (1981-2010), the projected changes for the far-future period (2071-2100) in the SSP5-8.5 scenario showed a 21.4% increase in precipitation, a 19.2% increase in evapotranspiration, a 40.9% increase in runoff, and a 16.6% increase in recharge on an annual average basis. On a monthly basis in the SSP5-8.5 scenario, precipitation was expected to increase by 24.5% in September, evapotranspiration by 34.1% in April, runoff by 58.1% in October, and recharge by 33.8% in September. To further assess projections based on extreme climate scenarios, we selected two models, CanESM5 and ACCESS-ESM1-5, which represented the maximum and minimum future precipitation forecasts, and compared the hydrological changes in the future scenarios. The results indicated that runoff and recharge rates were relatively higher in the CanESM5 model with the highest precipitation forecast, while evapotranspiration rates were higher in the ACCESS-ESM1-5 model with the lowest precipitation forecast. Based on the climate change scenarios used in this study, the overall available water resources on Jeju Island are more likely to increase. However, since results vary by season and region depending on the climate model and scenario, it is considered necessary to conduct a comprehensive analysis and develop response measures using various scenarios.

A Graphical User Interface Design for Surveillance and Security Robot (감시경계 로봇의 그래픽 사용자 인터페이스 설계)

  • Choi, Duck-Kyu;Lee, Chun-Woo;Lee, Choonjoo
    • The Journal of Korea Robotics Society
    • /
    • 제10권1호
    • /
    • pp.24-32
    • /
    • 2015
  • This paper introduces a graphical user interface design that is aimed to apply to the surveillance and security robot, which is the pilot program for the army unmanned light combat vehicle. It is essential to consider the activities of robot users under the changing security environment in order to design the efficient graphical user interface between user and robot to accomplish the designated mission. The proposed design approach firstly identifies the user activities to accomplish the mission in the standardized scenarios of military surveillance and security operation and then develops the hierarchy of the interface elements that are required to execute the tasks in the surveillance and security scenarios. The developed graphical user interface includes input control component, navigation component, information display component, and accordion and verified by the potential users from the various skilled levels with the military background. The assessment said that the newly developed user interface includes all the critical elements to execute the mission and is simpler and more intuitive compared to the legacy interface design that was more focused on the technical and functional information and informative to the system developing engineers rather than field users.

Study on Automation for Verification of Naval Ship's Operational Scenarios using Simulation: Focusing on Crew Messroom Case (시뮬레이션을 이용한 함정 운용 시나리오 검증 자동화 연구: 승조원을 고려한 Crew Messroom 운용성 검증을 중심으로)

  • Oh, Dae-Kyun;Lee, Dong-Kun
    • Journal of Ocean Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.24-30
    • /
    • 2013
  • The Korea Navy has been making constant efforts to apply M&S (modeling and simulation) to naval ship development, and the generalization of M&S for ship development is a trend. M&S for ship design is used for the V&V (verification and validation) of its design and operation, including design verification and ergonomic design that considers the crew using the Naval Ship Product Model. In addition, many parts of this M&S are repeatedly accomplished regardless of the kinds of ships. This study aims to standardize M&S, which repeatedly applies similar verifications for operation scenarios. A congestion assessment simulation for the major spaces of ships was the subject of the standardization based on the leading research results of various researchers, and a simulation automation solution was suggested. An information model using XML was proposed through the simulation automation concept, and a prototype system based on it was implemented. The usability was shown through a case study that verified the operability performance of the crew messroom.