• Title/Summary/Keyword: 2017 Pohang earthquake

Search Result 85, Processing Time 0.019 seconds

Prediction of Peak Ground Acceleration Generated from the 2017 Pohang Earthquake (2017년 포항지진으로 인하여 발생된 최대지반가속도 (PGA)예측)

  • Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.211-217
    • /
    • 2018
  • The Pohang earthquake with a magnitude of 5.4 occurred on November 15, 2018. The epicenter of this earthquake located in south-east region of the Korean peninsula. Since instrumental recording for earthquake ground motions started in Korea, this earthquake caused the largest economic and life losses among past earthquakes. Korea is located in low-to moderate seismic region, so that strong motion records are very limited. Therefore, ground motions recorded during the Pohang earthquake could have valuable geological and seismological information, which are important inputs for seismic design. In this study, ground motions associated by the 2018 Pohang earthquake are generated using the point source model considering domestic geological parameters (magnitude, hypocentral distance, distance-frequency dependent decay parameter, stress drop) and site amplification calculated from ground motion data at each stations. A contour map for peak ground acceleration is constructed for ground motions generated by the Pohang earthquake using the proposed model.

A Cross-Validation of SeismicVulnerability Assessment Model: Application to Earthquake of 9.12 Gyeongju and 2017 Pohang (지진 취약성 평가 모델 교차검증: 경주(2016)와 포항(2017) 지진을 대상으로)

  • Han, Jihye;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.649-655
    • /
    • 2021
  • This study purposes to cross-validate its performance by applying the optimal seismic vulnerability assessment model based on previous studies conducted in Gyeongju to other regions. The test area was Pohang City, the occurrence site for the 2017 Pohang Earthquake, and the dataset was built the same influencing factors and earthquake-damaged buildings as in the previous studies. The validation dataset was built via random sampling, and the prediction accuracy was derived by applying it to a model based on a random forest (RF) of Gyeongju. The accuracy of the model success and prediction in Gyeongju was 100% and 94.9%, respectively, and as a result of confirming the prediction accuracy by applying the Pohang validation dataset, it appeared as 70.4%.

Investigation of Structural Damage in Bearing Wall Buildings with Pilotis by 2017 Pohang Earthquake (2017 포항지진에 의한 필로티형 내력벽건물의 구조손상 분석)

  • Eom, Tae Sung;Lee, Seung Jae;Park, Hong Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • In 2017 Pohang Earthquake, a number of residential buildings with pilotis at their first level were severely damaged. In this study, the results of an analytical investigation on the seismic performance and structural damage of two bearing wall buildings with pilotis are presented. The vibration mode and lateral force-resisting mechanism of the buildings with vertical and plan irregularity were investigated through elastic analysis. Then, based on the investigations, methods of nonlinear modeling for walls and columns at the piloti level were proposed. By performing nonlinear static and dynamic analyses, structural damages of the walls and columns at the piloti level under 2017 Pohang Earthquake were predicted. The results show that the area and arrangement of walls in the piloti level significantly affected the seismic safety of the buildings. Initially, the lateral resistance of the piloti story was dominated mainly by the walls resisting in-plane shear. After shear cracking and yielding of the walls, the columns showing double-curvature flexural behavior contributed significantly to the residual strength and ductility.

A Study of Hypocentral Depth of Pohang Earthquake (포항 지진의 진원 깊이 연구)

  • Chung, Tae Woong;Lee, Youngmin;Iqbal, Muhammad Zafar;Jeong, Jina
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2018
  • 2017 Pohang earthquake (M 5.4) was more disastrous than 2016 Gyeongju earthquake (M 5.8), partly because of its shallow focal depth. However, precise focal depth of Pohang earthquake is still controversial. Close crustal model showed 6 ~ 11.5 km in relocation depth, whereas other models showed almost surface range. Geothermal study indicated temperature of $300^{\circ}C$ at depth of 7.5 km. Related with observations of seismogenic layer, the focal depth of Pohang earthquake seems to be 7 km depth as obtained by close model.

Damage Proxy Map (DPM) of the 2016 Gyeongju and 2017 Pohang Earthquakes Using Sentinel-1 Imagery

  • Nur, Arip Syaripudin;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.13-22
    • /
    • 2021
  • The ML 5.8 earthquake shocked Gyeongju, Korea, at 11:32:55 UTC on September 12, 2016. One year later, on the afternoon of November 15, 2017, the ML 5.4 earthquake occurred in Pohang, South Korea. The earthquakes injured many residents, damaged buildings, and affected the economy of Gyeongju and Pohang. The damage proxy maps (DPMs) were generated from Sentinel-1 synthetic aperture radar (SAR) imagery by comparing pre- and co-events interferometric coherences to identify anomalous changes that indicate damaged by the earthquakes. DPMs manage to detect coherence loss in residential and commercial areas in both Gyeongju and Pohang earthquakes. We found that our results show a good correlation with the Korea Meteorological Administration (KMA) report with Modified Mercalli Intensity (MMI) scale values of more than VII (seven). The color scale of Sentinel-1 DPMs indicates an increasingly significant change in the area covered by the pixel, delineating collapsed walls and roofs from the official report. The resulting maps can be used to assess the distribution of seismic damage after the Gyeongju and Pohang earthquakes and can also be used as inventory data of damaged buildings to map seismic vulnerability using machine learning in Gyeongju or Pohang.

Seismic Behavior of Domestic Piloti-type Buildings Damaged by 2017 Pohang Earthquake (2017년 포항지진으로 피해를 입은 국내 필로티형 건물의 지진 거동)

  • Kim, Taewan;Chu, Yurim;Kim, Seung Re;Bhandari, Diwas
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.161-168
    • /
    • 2018
  • Pohang earthquake occurred on November 15, 2017, with a magnitude of 5.4. The damage of the structure caused by the Pohang earthquake was the most significant in 4-story piloti-type buildings, where the damage patterns were different according to the location of columns and walls at the first story. One building with a staircase at a corner shows shear failure at columns, and Another building with a staircase in the middle shows no failure or shear failure at staircase walls. Therefore, two different piloti-type buildings were selected; one has a staircase at a corner and another has in the middle, and the seismic behavior of the buildings were examined by nonlinear dynamic analysis applying a ground motion measured at Pohang. Analytical model well simulated the actual behavior of the piloti-type buildings during the earthquake. Analysis results showed that walls have an insufficient shear strength wherever the location of the staircase is and columns with insufficient transverse reinforcement could be failed when the staircase is located at a corner. Conclusively, structural engineers should design columns and walls in piloti-type buildings to possess sufficient capacity according to the location of staircase.

Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake (포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

Seismic Damage to RC Low-rise Building Structures Having Irregularities at the Ground Story During the 15 November 2017 Pohang, Korea, Earthquake (2017.11.15. 포항 흥해지진의 저층 RC 비틀림 비정형 건축물의 피해 및 손상 특성)

  • Hwang, Kyung Ran;Lee, Han Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.103-111
    • /
    • 2018
  • This study examines the seismic failure of RC low-rise building structures having irregularities at the ground story during the 15 November 2017 Pohang, Korea, earthquake, $M_w=5.4$, which is the second strongest since the government began monitoring them in 1978 in South Korea. Some 2,000 private houses were damaged or destroyed in this earthquake. Particularly, serious damage to the piloti story of RC low-rise residential building structures of fewer than five stories was observed within 3 km of the epicenter with brittle shear failure of columns and walls due to severe torsional behavior. Buildings below six stories constructed before 2005 did not have to comply with seismic design requirements, so confinement detailing of columns and walls also led to inadequate performance. However, some buildings constructed after 2005 were damaged at the flexible side of the piloti story due to the high torsional irregularity. Based on these results, this study focuses on the problems of the seismic torsion design approach in current building codes.

Response Spectra of 2017 Pohang Earthquake and Comparison with Korean Standard Design Spectra (2017년 포항지진 스펙트럼과 한국표준설계스펙트럼의 비교)

  • Heo, Tae Min;Kim, Jung Han;Lee, Jin Ho;Kim, Jae Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.129-137
    • /
    • 2018
  • On November 15, 2017, Pohang earthquake occurred. Its local magnitude was announced to be $M_L=5.4$ by Korea Meteorological Administration (KMA). Ground motion data recorded at KMA stations were obtained from their data bases. From the data, horizontal and vertical response spectra, and V/H ratio were calculated. The horizontal spectra were defined as GMRotI50 spectra. From the statistical analysis of the GMRotI50 spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. Applying the same procedure, the shape and transition periods of vertical spectrum were obtained. These results were compared with theKorean standard design spectra, which were developed from domestic and overseas intra-plate earthquake records, and Gyeongju earthquake response spectra. The response spectra of Pohang earthquake were found to be almost identical with the newly proposed design spectra. Even the V/H ratios showed good agreement. These results confirmed that the method adopted when developing the standard design spectra were valid and the developed design spectra were reliable.

Damage Investigation of Pilotis Structures and Analysis of Damage Causes by Pohang Earthquake (포항지진에 의한 필로티 건축물 피해조사 및 피해원인 분석)

  • Kim, Ju-Chan;Shin, Seung-Hoon;Oh, Sang-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.3
    • /
    • pp.3-10
    • /
    • 2019
  • On November 15, 2017, an earthquake($M_L5.4$) occurred in Pohang. Pohang earthquake was the second largest earthquake since earthquake was observed in Korea, but structural damage caused by earthquake was biggest. Structural damage caused by Pohang earthquake was mainly caused by schools and pilotis, above all damage to pilotis was outstanding. This is because area where pilotis structures are concentrated is located near epicenter, and seismic performance of pilotis structures is not excellent compared with general structures. In this study, described results of damage investigation and analysis of damage causes through analysis of pilotis Structures on 131 buildings that were investigated immediately after Pohang earthquake. In addition, cause of damage was analyzed through analysis of seismic wave. Investigation site was selected to Jangseong-dong, where damage occurred in large numbers. Damage level was classified into A, B, and C level by measuring residual crack width and story drift of structural members.