• Title/Summary/Keyword: 200 GHz

Search Result 190, Processing Time 0.021 seconds

Simulation Study on Effect of Ge Profile Shape on SiGe HBT Characteristics (Ge profile 변화에 의한 SiGe HBT 소자 특성 시뮬레이션)

  • 김성훈;이미영;김경해;염병렬;황만규;이흥주;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.55-58
    • /
    • 2000
  • SiGe heterojuction bipolar transistors (HBT) have been studied and applied for advanced high speed integrated circuits. Device characteristics of SiGe HBT depending on the Ge profile of the transistor base region have been analysed using a device simulator, ATLAS/BLAZE. The models and parameters have been calibrated to the measured characteristics of the device, having a trapeziodal base profile, including the cut-off frequency of 45GHz and the dc current gain of 200. The Ge concentration which increases linearly, exponentially, or root-functionally from the emitter-base junction to the base-collector junction, has been tried to find out the influence on the device characteristics. The cut-off frequency and gain rather strongly depends on the exponential and root-functional Ge base profiles, respectively.

  • PDF

Wireless Communication System on Very High Frequency (초고주파대역 무선통신시스템 기술 동향)

  • Jung, J.H.;Kim, M.D.;Lee, J.N.;Cho, Y.K.;Kim, K.S.;Kwon, H.K.;Song, Y.S.;Park, H.S.;Choi, E.Y.;Kim, J.S.;Kim, T.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.28-41
    • /
    • 2019
  • Future mobile services will require data transmission rates of 100 Gbps or higher due to the universalization of virtual and augmented reality devices. Therefore, THz technology, which uses an ultrahigh frequency band of 200 GHz or higher, is expected to be a candidate for such high-quality services. This article describes the current status of THz radio propagation characteristics, device and system developments, and network requirements to identify the overall trends in THz wireless communication technology.

THE COMPLEX PERMEABILITY AND MATCHING FREQUENCY OF FERRITE MICROWAVE ABSORBER

  • Shin, Jae-Young;Oh, Jae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.800-804
    • /
    • 1995
  • The complex permeability dispersions and the microwave absorbing phenomena are investigated in ferrite microwave absorber. The complex permeability of NiZn ferrite, NiZnCo ferrite, and Y-type hexagonal ferrite were measured in 200MHz-14GHz range. Two types of resonances, the domain wall and the spin rotational resonance, were observed. With a ferrite particle with a diameter of about $1\;\mu\textrm{m}$, only spin rotational resonance were observed. The theoretical matching frequency is determined by plotting the measured complex permeability locus on the impedance matching solution map. One or two impedance matching phenomena are observed in the ferrite absorbers according to their complex permeability loci on the impedance matching solution map. The first matching frequency, found in the ferrite-rubber composites, which was higher than that of spin rotational resonance, increased with spin rotational resonance frequency.

  • PDF

Direct Time-domain Phase Correction of Dual-comb Interferograms for Comb-resolved Spectroscopy

  • Lee, Joohyung
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.289-297
    • /
    • 2021
  • We describe a comb-mode resolving spectroscopic technique by direct time-domain phase correction of unstable interferograms obtained from loosely locked two femtosecond lasers. A low-cost continuous wave laser and conventional repetition rate stabilization method were exploited for locking carrier and envelope phase of interferograms, respectively. We intentionally set the servo control at low bandwidth, resulting in severe interferograms' fluctuation to demonstrate the capability of the proposed correction method. The envelope phase of each interferogram was estimated by a quadratic fit of carrier peaks to correct timing fluctuation of interferograms in the time domain. After envelope phase correction on individual interferograms, we successfully demonstrated 1 Hz linewidth of RF comb-mode over 200 GHz optical spectral-bandwidth with 10-times signal-to-noise ratio (SNR) enhancement compared to the spectrum without correction. Besides, the group delay difference between two femtosecond pulses is successfully estimated through a linear slope of phase information.

Planning Large Program of Stellar Maser Study with KaVA

  • Cho, Se-Hyung;Imai, Hiroshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.114-114
    • /
    • 2014
  • We present our activities linking to planning of possible forms of large program to study on circumstellar H2O and SiO maser sources with KaVA. A great advantage of KaVA for the stellar maser observations is the combination of the unique capability of the multi-frequency phase referencing technique of KVN and the dual-beam astrometry of VERA with the KaVA's relative dense antenna configuration. We have demonstrated this advantage through the test observations conducted by the KaVA Evolved Stars Sub-working Group since 2012 March. Snapshot KaVA imaging is confirmed to be possible in integration time of 0.5 hour at the 22 GHz band and 1.0 hour at the 43 GHz band in typical cases. This implies that large snapshot imaging surveys towards many H2O and SiO stellar masers are possible within a reasonable machine time (e.g., scans on ~100 maser sources within 200 hours). This possibility enables us to select the maser sources, which are suitable for future long-term (10 years) intensive (biweekly-monthly) monitoring observations, from 1000 potential target candidates selected from dual-frequency band (K/Q-bands) KVN single-dish observations. The output of the survey programs will be used for statistical analysis of the structures of individual stellar maser clumps and the spatio-kinematical structures of circumstellar envelopes with accelerating outflows. The combination of astrometry in milliarcsecond(mas) level and the multi-phase referencing technique yields not only trigonometric parallax distances to the masers but also precise position reference for registration of different maser lines. The accuracy of the map registration affects interpretation of the excitation mechanism of the SiO maser lines and the origin of the variety of the maser actions, which are expected to reflect periodic behaviors of the circumstellar envelope with stellar pulsation. Currently we are checking the technical feasibility of KaVA operations for this combination. After this feasibility test, the long-term monitoring campaign program will run as one of KaVA's legacy projects.

  • PDF

Low Temperature Sintering and Microwave Dielectric Properties of Ca[Ti1-x(Ni1/3Nb2/3)x]O3 Ceramics (Ca[Ti1-x(Ni1/3Nb2/3)x]O3 세라믹스의 저온소결 및 마이크로파 유전특성)

  • Lee, Young-Gyu;Kim, Hyo-Tae;Nam, Joong-Hee;Kim, Jong-hee;Paik, Ungyu
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.55-61
    • /
    • 2006
  • The microwave dielectric properties and low temperature sintering of $Ca[Ti_{1-x}(Ni_{1/3}Nb_{2/3})_x]O_3$ system were investigated at the sintering temperature $1,200\~1,350^{\circ}C$. The density and quality factors $(Q{\times}f)$ increased while dielectric constants slightly decreased with the decrease of Ti. The dielectric constant, quality factor, and temperature coefficient of resonance frequency $(\tau_f)$ were 64, 17,000 GHz, and $-9.1\;ppm/^{\circ}C$ respectively, when $CaTi_{1/2}(Ni_{1/3}Nb_{2/3})_{1/2}O_3$ ceramics were sintered at $1,300^{\circ}C$ for 4 h. $2Li_2O-B_2O_3$ was added to $CaTi_{1/2}(Ni_{1/3}Nb_{2/3})_{1/2}O_3$ to decrease the sintering temperature for LTCC application. The microwave dielectric properties of the samples sintered at $925^{\circ}C$ for 2 h with the addition of $6\;wt\%\;2Li_2O-B_2O_3$ were $\varepsilon_r=48.7,\;Q{\times}f=8,460\;GHz$, and $\tau_f=+5.6ppm/^{\circ}C$. Compatibility test of the composition with silver electrode shows no reaction with silver electrode, implying the feasibility as a high-K LTCC material.

Sea Ice Extents and global warming in Okhotsk Sea and surrounding Ocean - sea ice concentration using airborne microwave radiometer -

  • Nishio, Fumihiko
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.76-82
    • /
    • 1998
  • Increase of greenhouse gas due to $CO_2$ and CH$_4$ gases would cause the global warming in the atmosphere. According to the global circulation model, it is pointed out in the Okhotsk Sea that the large increase of atmospheric temperature might be occurredin this region by global warming due to the doubling of greenhouse effectgases. Therefore, it is very important to monitor the sea ice extents in the Okhotsk Sea. To improve the sea ice extents and concentration with more highly accuracy, the field experiments have begun to comparewith Airborne Microwave Radiometer (AMR) and video images installed on the aircraft (Beach-200). The sea ice concentration is generally proportional to the brightness temperature and accurate retrieval of sea ice concentration from the brightness temperature is important because of the sensitivity of multi-channel data with the amount of open water in the sea ice pack. During the field experiments of airborned AMR the multi-frequency data suggest that the sea ice concentration is slightly dependending on the sea ice types since the brightness temperature is different between the thin and small piece of sea ice floes, and a large ice flow with different surface signatures. On the basis of classification of two sea ice types, it is cleary distinguished between the thin ice and the large ice floe in the scatter plot of 36.5 and 89.0GHz, but it does not become to make clear of the scatter plot of 18.7 and 36.5GHz Two algorithms that have been used for deriving sea ice concentrations from airbomed multi-channel data are compared. One is the NASA Team Algorithm and the other is the Bootstrap Algorithm. Intrercomparison on both algorithms with the airborned data and sea ice concentration derived from video images bas shown that the Bootstrap Algorithm is more consistent with the binary maps of video images.

  • PDF

The Susceptibility of Electronic Circuits inside the Cavity by HPEM(High Power Electromagnetics) Environment (금속 함체내부로 입사되는 고출력 전자기 펄스에 대한 전자회로의 민감성 분석)

  • Hwang, Sunl-Mook;Kwon, Hae-Ok;Huh, Chang-Su;Choi, Jin-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1892-1897
    • /
    • 2012
  • Modern electronic circuits are of importance for the function of communication, traffic systems and security systems. An intentional threat to these systems could be of big casualties and economic disasters. This study has examined susceptibility of electronic circuits inside the cavity by HPEM(High Power Electromagnetics). The UWB measurements were done at an anechoic chamber using a RADAN voltage source, which can generate a transient impulse of about 200 kV. The HPEM wave penetrated inside the metal case appeared to the long damped ringwave of pulse length compared with the incident wave. In addition, the resonant frequency generated inside the metal case occurred primarily in the range of 1~3 GHz. The frequency band of 1~3 GHz was influenced on the electronic circuit, which was confirmed by an external antenna and an internal absorber. The electronic circuit was influenced by HPEM infiltrated into the cavity at the 86 kV/m out of the metal cases. Also in case of an absorber the susceptibility of an electronic circuit was smallest among other cases(aperture, antenna). It is considered that absorber has a function absorbing electromagnetic wave infiltrated into the cavity and simultaneously limiting resonance by varying a boundary condition inside the cavity. Based on the results, electronic equipment systems could be applied to protection that has suited system requirements.

Gate length scaling behavior and improved frequency characteristics of In0.8Ga0.2As high-electron-mobility transistor, a core device for sensor and communication applications (센서 및 통신 응용 핵심 소재 In0.8Ga0.2As HEMT 소자의 게이트 길이 스케일링 및 주파수 특성 개선 연구)

  • Jo, Hyeon-Bhin;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.436-440
    • /
    • 2021
  • The impact of the gate length (Lg) on the DC and high-frequency characteristics of indium-rich In0.8Ga0.2As channel high-electron mobility transistors (HEMTs) on a 3-inch InP substrate was inverstigated. HEMTs with a source-to-drain spacing (LSD) of 0.8 ㎛ with different values of Lg ranging from 1 ㎛ to 19 nm were fabricated, and their DC and RF responses were measured and analyzed in detail. In addition, a T-shaped gate with a gate stem height as high as 200 nm was utilized to minimize the parasitic gate capacitance during device fabrication. The threshold voltage (VT) roll-off behavior against Lg was observed clearly, and the maximum transconductance (gm_max) improved as Lg scaled down to 19 nm. In particular, the device with an Lg of 19 nm with an LSD of 0.8 mm exhibited an excellent combination of DC and RF characteristics, such as a gm_max of 2.5 mS/㎛, On resistance (RON) of 261 Ω·㎛, current-gain cutoff frequency (fT) of 738 GHz, and maximum oscillation frequency (fmax) of 492 GHz. The results indicate that the reduction of Lg to 19 nm improves the DC and RF characteristics of InGaAs HEMTs, and a possible increase in the parasitic capacitance component, associated with T-shap, remains negligible in the device architecture.

Temperature Dependent Terahertz Generation at Periodically Poled Stoichiometric Lithium Tantalate Crystal Using Femtosecond Laser Pulses

  • Yu, N.E.;Kang, C.;Yoo, H.K.;Jung, C.;Lee, Y.L.;Kee, C.S.;Ko, D.K.;Lee, J.
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.200-204
    • /
    • 2008
  • Coherent tunable terahertz generation was demonstrated in periodically poled stoichiometric lithium tantalate crystal via difference frequency generation of femtosecond laser pulses. Simultaneous forward and backward terahertz radiations were obtained around 1.35 and 0.63 THz, respectively at low temperature. By cooling the crystal to reduce losses caused by phonon absorptions, the generated THz bandwidth was as narrow as 23GHz at the center frequency of 0.63 THz. The measurement result of temperature-dependent showed gradual intensity increase of the generated terahertz pulse and red shift of the center frequency as the temperature decrease from 291 to 143 K, but insignificant reduction of the spectral bandwidth. Furthermore, the stoichiometric crystal was very suitable for the suppression of THz loss at low temperature compared to the congruent $LiNbO_3$ crystal.