• 제목/요약/키워드: 20-DOF Vehicle Model

검색결과 5건 처리시간 0.02초

20자유도 자동차모델을 이용한 가상 주행 시뮬레이터의 개발 (Development of a Virtual Driving Simulator Using 20-DOF Vehicle Model)

  • 김형내;김석일
    • 한국CDE학회논문집
    • /
    • 제3권1호
    • /
    • pp.40-47
    • /
    • 1998
  • Recently, the various driving simulator have been used widely to analyze the handling performance of vehicle and to verify the motion control algorithm of vehicle. In this study, a virtual driving simulator based on the 20-DOF vehicle model is realized to estimate the handling performance and stability of a 4WS (Four-wheel-steering) and/or 4n(Four-wheel-driving) vehicle. Especially the DC motor controlled 4WS actuator is modelled in order to reflect the effect of the responsiveness of actuator on the handling performance and stability. And the realized simulator can be applied to develope a real time simulation system for designing and testing the real vehicles.

  • PDF

Three Degrees of Freedom Global Calibration Method for Measurement Systems with Binocular Vision

  • Xu, Guan;Zhang, Xinyuan;Li, Xiaotao;Su, Jian;Lu, Xue;Liu, Huanping;Hao, Zhaobing
    • Journal of the Optical Society of Korea
    • /
    • 제20권1호
    • /
    • pp.107-117
    • /
    • 2016
  • We develop a new method to globally calibrate the feature points that are derived from the binocular systems at different positions. A three-DOF (degree of freedom) global calibration system is established to move and rotate the 3D calibration board to an arbitrary position. A three-DOF global calibration model is constructed for the binocular systems at different positions. The three-DOF calibration model unifies the 3D coordinates of the feature points from different binocular systems into a unique world coordinate system that is determined by the initial position of the calibration board. Experiments are conducted on the binocular systems at the coaxial and diagonal positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.573 mm, 0.520 mm and 0.528 mm at the coaxial positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.495 mm, 0.556 mm and 0.627 mm at the diagonal positions. This method provides a global and accurate calibration to unity the measurement points of different binocular vision systems into the same world coordinate system.

퍼지제어기를 이용한 차동브레이크 시스템의 능동 조향제어 (Active Handling Control of the Differential Brake System Using Fuzzy Controller)

  • 윤여흥;장봉춘;이성철
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.82-91
    • /
    • 2003
  • Vehicle dynamics control (VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC, In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. An 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since fuzzy logic can consider the nonlinear effect of vehicle modeling, fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.

비선형 Kalman Filter를 사용한 타이어 횡력 추정 시스템 (Tire Lateral Force Estimation System Using Nonlinear Kalman Filter)

  • 이동훈;김인근;허건수
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.126-131
    • /
    • 2012
  • Tire force is one of important parameters which determine vehicle dynamics. However, it is hard to measure tire force directly through sensors. Not only the sensor is expensive but also installation of sensors on harsh environments is difficult. Therefore, estimation algorithms based on vehicle dynamic models are introduced to estimate the tire forces indirectly. In this paper, an estimation system for estimating lateral force and states is suggested. The state-space equation is constructed based on the 3-DOF bicycle model. Extended Kalman Filter, Unscented Kalman Filter and Ensemble Kalman Filter are used for estimating states on the nonlinear system. Performance of each algorithm is evaluated in terms of RMSE (Root Mean Square Error) and maximum error.

칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구 (Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model)

  • 복정진;장조원
    • 한국항공우주학회지
    • /
    • 제43권9호
    • /
    • pp.765-772
    • /
    • 2015
  • 칼새 비행의 생체모방 초소형 비행체 적용 가능성을 확인하기 위한 공력측정과 위상동기 PIV 연구가 수행되었다. 2축 회전자유도의 로봇 날개 모델과 불어내기식 풍동을 사용하였다. 비틀림 각은 ${\pm}0$, ${\pm}5$, ${\pm}10$, ${\pm}20$도의 진폭을 갖고, 스트로크각은 90도의 위상차를 갖는 단순조화함수로 변화시켰다. 비틀림 각에 따른 시간에 대한 양력계수 변화는 작은 공력감소와 지연만을 나타내며 주목할 만한 차이를 보이지 않았다. 그러나 항력은 작은 비틀림 각 변화가 큰추력을 생성할 수 있음을 보여주었다. 이러한 것들은 칼새가 비행 중에 작은 비틀림 각을 사용하는 이유를 간접적으로 설명해 준다. PIV연구 결과는 공력지연이 날개주위의 와류구조와 밀접한 관계있다는 것을 보여준다. 이러한 결과는 칼새 모방형 초소형비행체 설계에 있어 비틀림 각은 필수적인 파라미터로서 반드시 고려되어야 함을 의미한다.