• Title/Summary/Keyword: 2.4GHz band

Search Result 1,103, Processing Time 0.031 seconds

2.4/5GHz Dual-Band RF Design and Implementation and Performance Evaluation (2.4/5GHz 이중대역 RF 설계 및 구현과 성능 평가)

  • Byung-Ik Jung;Gyeong-Hyu Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.755-760
    • /
    • 2023
  • In this paper, the 2.4/5GHz dual band was used to ensure the reliability and stability of the wireless AV surveillance system using the existing 2.4GHz band. The proposed system supports dynamic channel allocation and channel change technology to avoid interference from other signals (Wifi, Bluetooth, etc.), reduces maintenance costs incurred when building wireless CCTV, and can be linked with existing wired CCTV. The service area of the A/V surveillance system used can be expanded.

Fully Embedded 2.4GHz Compact Band Pass Filter into Multi-Layered Organic Packaging Substrate

  • Lee, Seung-J.;Lee, Duk-H.;Park, Jae-Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2008
  • In this paper, fully embedded 2.4GHz WLAN band pass filter (BPF) was investigated into a multi-layered organic packaging substrate using high Q spiral stacked inductors and high Dk MIM capacitors for low cost RF System on Package (SOP) applications. The proposed 2.4GHz WLAN BPF was designed by modifying chebyshev second order filter circuit topology. It was comprised of two parallel LC resonators for obtaining two transmission zeros. It was designed by using 2D circuit and 3D EM simulators for finding out optimal geometries and verifying their applicability. It exhibited an insertion loss of max -1.7dB and return loss of min -l7dB. The two transmission zeros were observed at 1.85 and 6.7GHz, respectively. In the low frequency band of $1.8GHz{\sim}1.9GHz$, the stop band suppression of min -23dB was achieved. In the high frequency band of $4.1GHz{\sim}5.4GHz$, the stop band suppression of min -l8dB was obtained. It was the first embedded and the smallest one of the filters formed into the organic packaging substrate. It has a size of $2.2{\times}1.8{\times}0.77mm^3$.

  • PDF

Design and Fabrication of Quadruple Band Antenna with DGS (DGS를 적용한 4중대역 안테나의 설계 및 제작)

  • Kim, Min-Jae;Choi, Tea-Il;Choi, Young-Kyu;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • In this paper, we propose a quadruple band antenna for GPS/WLAN/WiMAX application. The proposed antenna has quadruple band characteristics by considering the interconnection of four strip lines and DGS on the ground place. The total substrate size is 20.0 mm (W1) ⨯27.0 mm (L1), thickness (h) 1.0 mm, and the dielectric constant is 4.4, which is made of 20.0 mm (W2)⨯ 27.0 mm (L8 + L6+ L10) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 60 MHz (1.525 to 1.585 GHz) bandwidth for GPS band, 825 MHz (3.31 to 4.135 GHz) bandwidth for WiMAX band and 480 MHz (2.395 to 2.975 GHz) and 385 MHz (5.10 to 5.485 GHz) bandwidth for WLAN band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency of triple band as required.

A Study on Design Method of Band Rejection for Broadband Series-fed Dipole Pair Antenna (광대역 직렬 급전 다이폴 쌍 안테나의 대역 저지 설계 방법 연구)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.56-58
    • /
    • 2013
  • In this paper, a design method to obtain a band rejection characteristic in the 2.4-2.484 GHz WLAN band is studied for a series-fed dipole pair (SDP) antenna operating in the band of 1.7-2.7 GHz for mobile communication base station applications. The band rejection characteristic is achieved by inserting U-shaped slots on the coplanar strip line connecting the two dipole elements of the SDP antenna. The effects of the location and dimension of the slots on the band rejection characteristics are examined. The optimized SDP antenna with WLAN band rejection is fabricated on an FR4 substrate and the experimental results show that the antenna has a desired band rejection performance with a frequency band of 1.65-2.78 GHz (51.0%) for a VSWR < 2, and a rejection band of 2.39-2.54 GHz.

  • PDF

Design and Analysis of Dual Band I/Q Modulator For Wireless LAN (무선랜용 이중대역 I/Q 모듈레이터의 설계 및 특성 해석)

  • Park, Hyun-Woo;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • A dual band I/Q modulator which converts baseband input signals to 2.4GHz or 5GHz RF output has been proposed. The dual band I/Q modulator for 2.4GHz and 5GHz wireless LAN applications consists of $90^{\circ}$ phase shifter and wideband mixer. The I/Q modulator showed 15dB conversion loss at 2.4GHz and 16dB conversion loss at 5GHz. The sideband suppression is about 15dBc at 2.4GHz and 16dBc at 5GHz. Measured data shows 8.5% EVM at 2.4GHz, and 10% EVM at 5GHz for QPSK with symbol rate of 11Mbps. A carrier rejection is about 40dBc at 2.4GHz/5GHz band, and the I/Q modulator satisfied the output wireless LAN spectrum mask with baseband input signal.

A Study on 2.4/5GHz Dual-Band RF Design Technology (2.4/5GHz 이중대역 RF 설계 기술에 대한 연구)

  • Byung-Ik Jung;Gyeong-Hyu Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.259-268
    • /
    • 2023
  • In this paper, it is said that the quality of wireless service has been improved by providing wireless service that can eventually overcome wired wires by using 2.4GHz band wireless access technology that supports 2.4/5GHz dual band. Increasing the maintenance cost incurred when building wireless CCTV, makes it possible to connect with existing CCTV, and study about expanding the service area of A/V surveillance system using CCTV.

Dual-Band Class-F Power Amplifier based on dual-band transmission-lines (이중 대역 전송선로를 활용한 이중 대역 F급 전력 증폭기 개발)

  • Lee, Chang-Min;Park, Young-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, highly efficient dual-band class-F power amplifiers(PAs) for cellular and WLAN bands are suggested and implemented. For the first step, single-band class-F amplifiers at 840MHz, 2.4GHz are designed using commercial E-pHEMT FETs. The performance of two single band PAs are as much as 81.2% of efficiency with the output power of 24.4dBm with 840MHz PA and 93.5% of efficiency with 22.4dBm from the 2.4GHz. For the dual-band class-F PA, the harmonic controlling circuit with ideal SPDT switch was suggested. The length of transmission line is variable by a SPDT switch. As a results, the operation in 840MHz showed the peak efficiency of 60.5% with 23.5dBm, while in 2.4GHz mode the efficiency was 50.9% with the output power of 19.62dBm. Besides, it is shown that the harmonic controller of class-F above 2Ghz could be implemented on the low cost FR-4 substrate.

Design of Wide band folded monopole slot antenna for 3G/4G/5G/Wi-Fi(dual band) services (3G/4G/5G/Wi-Fi(이중대역)용 광대역 모노폴 슬롯 안테나 설계)

  • Shin, Dong-Gi;Lee, Yeong-Min;Lee, Young-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.127-134
    • /
    • 2022
  • A modified folded monopole slot antenna for 3G WCDMA (1.91 ~ 2.17 GHz), 4G LTE (2.17 ~ 2.67 GHz), 3.5 GHz 5G (3.42 ~ 3.7 GHz) and Wi-Fi dual band (2.4 ~ 2.484 GHz / 5.15 ~ 5.825 GHz) was proposed for the first time. The proposed antenna is designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 35 × 60 mm2. The measured impedance bandwidth of the proposed antenna is 2910 MHz(1.84 ~ 4.75 GHz) and 930 MHz(5.11 ~ 6.04 GHz), antenna gain in each frequency band is from 1.811 to 3.450 dBi. In particular, it was possible to obtain a commercially suitable omni-directional radiation pattern in all frequency bands of interest.

Design and fAbrication of Triple Band WLAN Antenna Applicable to Wi-Fi 6E Band with DGS (DGS를 갖는 Wi-Fi 6E 대역을 위한 삼중대역 WLAN 안테나 설계 및 제작)

  • Sang-Wook Park;Gi-Young Byun;Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.345-354
    • /
    • 2024
  • In this paper, we propose a triple band WLAN antenna for Wi-Fi 6E band with DGS. The proposed antenna has the characteristics required frequency band and bandwidth by considering the interconnection of two strip lines and three areas on the ground place. The total substrate size is 31 mm (W) × 50 mm (L), thickness (h) 1.6 mm, and the dielectric constant is 4.4, which is made of 22 mm (W6 + W4 + W5) × 43mm (L1 + L2 + L3 + L5) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 340 MHz (1.465 to 1.805 GHz) for 900 MHz band, 480 MHz (2.155 to 2.635 GHz) for 2.4 GHz band and 1950 MHz (4.975 to 6.925 GHz) for 5.0/6.0 GHz band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency triple band as required.

A design and manufacture of CPW-Fed UWB antenna with notched WLAN band by using a U shaped slot (U자형 슬롯을 사용하여 WLAN 대역이 제거된 CPW 급전 방식을 갖는 UWB 안테나 설계 및 제작)

  • Ha, Yun-Sang;Kim, Gi-Rae;Yun, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2518-2525
    • /
    • 2015
  • In this paper, we propose a UWB(Ultra Wide Band) antenna with CPW(Coplanar Waveguide) structure notched the 802.11a(5.15 ~ 5.825 GHz) band by using the U shaped slot. The proposed antenna not only shows Ultra-Wideband characteristic(3.1 ~ 10.6 GHz) suitable for UWB communications but has partially notched-band characteristic to reject 5 GHz WLAN band(5.15 ~ 5.825 GHz). The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.4, and its overall size is $30mm(W){\times}20mm(L){\times}1mm(t)$. Fabricated antenna satisfied $VSWR{\leq}2$ in 3.1 ~ 10.6 GHz except for the band rejection of 5.15 ~ 5.825 GHz. And measured results of gain and radiation patterns characteristics displayed determined for operating bands.