• Title/Summary/Keyword: 2.4GHz band

Search Result 1,103, Processing Time 0.023 seconds

Design of a Rectenna Using Dual Band/Dual Polarization Microstrip Patch Antenna (이중대역/이중편파 패치 안테나를 이용한 렉테나 설계)

  • Seo, Ki-Won;Kim, Jung-Han;Roh, Hyoung-Hwan;Seong, Yeong-Rak;Oh, Ha-Ryoung;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2268-2272
    • /
    • 2010
  • This letter presents that a rectenna can utilize more stable wireless power by using a new design dual band/dual polarization microstrip patch antenna and 2 stage voltage multiplier at 2.4 GHz band and 3.1 GHz band. The proposed antenna is a new microstrip patch antenna design to make impedance matching possible by using slotted capacitive coupling between the patch and $50\Omega$ feed line on a ground plane. Its advantage is that the size of the rectenna can be reduced by using $50\Omega$ feed line on the ground plane, which can be used efficiently. The dual band/dual polarization microstrip patch antenna shows circular polarization at 2.4 GHz band and linear polarization at 3.1 GHz band. Under -10 dB return loss, The dual band/dual polarization microstrip patch antenna obtains 340 MHz bandwidth as 2.23~2.57 GHz and 375 MHz bandwidth as 2.95~3.325 GHz. Also, 2 Stage Voltage multiplier is possible to operate at 2.4 GHz band and 3.1 GHz band. The designed retenna can usually obtain wireless power at both 3.1 GHz band, and 2.4 GHz band applications such as Wi-Fi, Bluetooth, Wireless LAN, etc. So more stable wireless power can be utilized at the same time.

Design of Triple-band Triple Dipole Quasi-Yagi Antenna for WLAN and WiMAX Applications (무선 랜과 WiMAX 응용을 위한 삼중 대역 삼중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, the design of a triple dipole quasi-yagi antenna operating in the 2.45 GHz and 5 GHz wireless LAN frequency bands and the 3.5 GHz WiMAX frequency band was studied. The proposed quasi-Yagi antenna consists of three dipoles connected in series with a V-shaped ground plane. The longest half-bow-tie-shaped dipole resonates in the 2.45 GHz band, whereas the medium-length dipole resonates at 3.5 GHz. The shortest dipole resonates in the 5 GHz band. By adjusting the length and width of the dipoles and the spacings between the dipoles, a triple-band directional antenna operating in the 2.45 GHz, 3.5 GHz, and 5 GHz bands are designed, and fabricated on an FR4 substrate with a size of 45 mm × 55 mm. It was confirmed that the fabricated antenna operates in the designed triple bands of 2.32-2.57 GHz, 3.26-3.69 GHz, and 4.50-6.56 GHz for a voltage standing wave ratio less than 2. Gain is maintained above 3 dBi in the three bands.

Dual-band Monopole Antenna with Half X-slot for WLAN (절반의 X-슬롯을 가진 무선랜용 이중대역 모노폴 안테나)

  • Shin, Dong-Gi;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.449-455
    • /
    • 2018
  • For the size reduction, we propose a microstrip-fed monopole antenna with half X-slot in the radiation patch and cover WLAN dual band 2.4 GHz band (2.4 ~ 2.484 GHz) and 5 GHz band (5.15 ~ 5.825 GHz). The frequency characteristics such as impedance bandwidth and resonant frequencies were satisfied by optimizing the numerical values of various parameters, while the reflection loss in 5 GHz was improved by using defected ground structure (DGS). The proposed antenna is designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of $24{\times}41mm^2$. The measured impedance bandwidths (${\mid}S_{11}{\mid}{\leq}-10dB$) of fabricated antenna are 450 MHz (2.27 ~ 2.72 GHz) in 2.4 GHz band and 1340 MHz (4.79 ~ 6.13 GHz) in 5 GHz band which sufficiently satisfied with the IEEE 802. 11n standard in dual band. In particular, radiation patterns which are stable as well as relatively omni-direction could be obtained, and the gain of antennas in each band was 1.31 and 1.98 dBi respectively.

Design of Dual-band Monopole Antenna for WLAN and UWB Applications (WLAN 및 UWB 응용을 위한 이중 대역 모노폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.811-817
    • /
    • 2014
  • In this paper, a design method for a dual-band monopole antenna operating in the bands of 2.45 GHz WLAN and UWB is studied. A monopole antenna operating in UWB band is first designed, and a slot is inserted on the monopole to operate in 2.45 GHz WLAN band. The optimized dual-band monopole antenna is fabricated on an FR4 substrate, and the experimental results show that the antenna has a dual-band characterisitc in WLAN and UWB bands with the frequency bands of 2.35-2.50 GHz and 2.99-11.82 GHz for a VSWR < 2. Measured gain is 1 dBi at 2.45 GHz, and ranges 1.5-4.6 dBi in the frequency band of 3.1-10.6 GHz.

A Study on the Characteristics of Microstrip Patch Antenna with Slot/T-Slot Capacitive Coupling (슬롯/T-슬롯 커패시티브 커플링을 이용한 마이크로스트립 패치 안테나의 특성 연구)

  • Seo, Ki-Won;Roh, Hyoung-Hwan;Seong, Yeong-Rak;Oh, Ha-Ryoung;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1282-1288
    • /
    • 2010
  • This paper proposes a novel microstrip patch antenna to make impedance matching possible by using slot/T-slot capacitive coupling between the patch and 50 $\Omega$ feed line on a ground plane. The single band/linear polarization patch antenna shows linear polarization at 2.4 GHz band. Under -10 dB return loss, the single band/linear polarization patch antenna obtains 50 MHz bandwidth at 2.37 GHz~2.42 GHz. The dual band/dual polarization microstrip patch antenna shows circular polarization at 2.4 GHz band and linear polarization at 3.1 GHz band. Under -10 dB return loss, The dual band/dual polarization microstrip patch antenna obtains 340 MHz bandwidth at 2.23~2.57 GHz and 375 MHz bandwidth at 2.95~3.325 GHz.

Compact Dual-Band MIMO Antenna with High Isolation Performance (소형 고 격리도 듀얼 밴드 MIMO 안테나)

  • Yeom, In-Su;Jung, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.865-871
    • /
    • 2010
  • A compact dual-band(IEEE 802.11b: 2.4~2.5 GHz, 11a: 5.15~5.825 GHz) 2-channel MIMO antenna for PMP applications is presented. The proposed antenna is composed of a planar inverted F-shape antenna(PIFA) operating at 2 GHz band and a loop antenna operating at 5 GHz band. The proposed antenna is orthogonally arranged at the edge of the ground plane for polarization and pattern diversities with excellent isolation characteristics. The two PIFA antennas operating 2 GHz have connecting line($\lambda_g$/4) face to the feed point for high isolation and low correlation at 2 GHz band. The two loop antennas connected each other in the bottom side to improve the isolation at 5 GHz band. The proposed antenna has a sufficient gain in WLAN service band and is compact sized for the portable media player (PMP) applications.

Series-Fed Dipole Pair Antenna with WLAN Band Rejection Characteristic (WLAN 대역 저지 특성을 가지는 직렬 급전 다이폴 쌍 안테나)

  • Yeo, Junho;Hong, Jae Pyo;Lee, Jong-Ig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1982-1987
    • /
    • 2013
  • In this paper, a design method to obtain a band rejection characteristic in the 2.4-2.484 GHz WLAN band is studied for a series-fed dipole pair (SDP) antenna operating in the band of 1.7-2.7 GHz for mobile communication base station applications. The band rejection characteristic is achieved by inserting U-shaped slots on the coplanar strip line connecting the two dipole elements of the SDP antenna. The effects of the location and dimension of the slots on the rejection band characteristics are examined. The optimized SDP antenna with WLAN band rejection is fabricated on an FR4 substrate and the experimental results show that the antenna has a desired band rejection performance with a frequency band of 1.65-2.78 GHz (51.0%) for a VSWR < 2, and a rejection band of 2.39-2.54 GHz.

Compact Dual-band CPW-fed Slot Antenna Using Split-Ring Resonator (분할 링 공진기를 이용한 소형 이중 대역 CPW-급전 슬롯 안테나)

  • Yeo, Junho;Park, Jin-Taek;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2526-2533
    • /
    • 2015
  • In this paper, a design method for a compact dual-band coplanar waveguide-fed slot antenna using SRR(split-ring resonator) conductor is studied. The SRR conductor is loaded inside a rectangular slot of the proposed antenna for dual-band operation. When the SRR conductor is inserted into the slot, the original rectangular slot is divided into a rectangular loop region and a rectangular slot region, and frequency bands are created by the loop and slot, separately. A prototype of the proposed dual-band slot antenna operating at 2.45 GHz WLAN band and 3.40-5.35 GHz band is fabricated on an FR4 substrate with a dimension of 30 mm by 30 mm. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.38-2.51 GHz and 3.32-5.38 GHz for a voltage standing wave < 2, and measured gain is 1.7 dBi at 2.45 GHz, and it ranges 2.4-3.2 dBi in the second band.

Design and Manufacture of Triple-Band Antennas with Two Branch Line and a Vertical Line for WLAN/WiMAX system applications (2개 분기선로와 수직 선로를 갖는 WLAN/WiMAX 시스템에 적용 가능한 삼중대역 안테나 설계 및 제작)

  • Choi, Tae-Il;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.740-747
    • /
    • 2019
  • In this paper, an antenna applicable to WLAN and WiMAX frequency bands is designed, fabricated, and measured. The proposed antenna is designed to have two branch strip line in the patch plane and a rectangular slit in the ground plane based on microstrip feeding for triple band characteristics and added a vertical strip in the ground plane to enhance impedance bandwidth characteristics. The proposed antenna is designed on a substrate with a relative permittivity of 4.4, a thickness of 1.0 mm, and has a size of $18.0mm(W1){\times}37.3mm$ (L4+L5+L7). From the fabricated and measured results, impedance bandwidths of 480 MHz (2.32 to 2.80 GHz) for 2.4/2.5 GHz band, 810 MHz (3.22 to 4.03 GHz) for 3.5 GHz band, and 1,820 MHz (5.05 to 6.87 GHz) for 5.0 GHz band were obtained based on the impedance bandwidth. Measured 3D pattern and gains are displayed.

Compact Dual-band Slot Antenna With Bent Slots (접힌 슬롯이 추가된 소형 이중 대역 슬롯 안테나)

  • Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1049-1056
    • /
    • 2016
  • In this paper, a design method for a compact dual-band slot antenna with bent slot is studied. Bent slots are added on the rectangular slot of the proposed antenna for dual-band operation. The rectangular slot is fed by a coaxial cable by placing a rectangular feeding patch inside the slot. When the bent slots are added onto the both corner of the upper side of the rectangular slot symmetrically, a new resonant frequency is created in low frequency because of the increasement of the slot length. A prototype of the proposed dual-band slot antenna operating at 2.45 GHz WLAN band and 4.50-8.30 GHz band including 5GHz WLAN band is fabricated on an FR4 substrate with a dimension of 30 mm by 30 mm. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.40-2.49 GHz and 4.33-9.85 GHz for an input reflection coefficient < -10 dB.