• Title/Summary/Keyword: 2.4GHz Band Applications

Search Result 177, Processing Time 0.026 seconds

Analysis and Experiment of 2.4GHz Radio Frequency Interference for Wireless Sensor Networks-based Applications (WSNs 기반의 어플리케이션을 위한 2.4GHz 대역의 주파수 간섭 분석 및 검증 실험)

  • Kwon, Jong-Won;Ahn, Gwang-Hoon;Kim, Seok-Rae;Kim, Hie-Sik;Kang, Sang-Hyuk
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.290-292
    • /
    • 2009
  • With advance in technologies for wireless sensor networks(WSNs), 2.4 GHz band has become gradually attractive due to increase in low-power wireless communication devices. Especially ZigBee(IEEE 802.15.4-based) technology whose frequency band includes the 2.4GHz industrial, scientific and medical band providing nearly worldwide availability has been universally applicable to a various remote monitoring system and applications related home network system. However network throughput of these systems is significantly deteriorated due to this ISM band is a license-exemption used in a variety of low-power wireless communication devices. For instance, other IEEE 802 wireless standards such as Bluetooth, WLAN, Wi-Fi and others cause radio interference to ZigBee. The experiments was carried out to analyze radio frequency interference between heterogeneous devices using ISM bands to improve the limited frequency utility factor. Finally this paper suggests a frequency hopping-based adaptive multi-channel methods to decrease interference with empirical results.

  • PDF

Design of CPW-Fed Small Multi-Band Antenna by Using Band Rejection Semicircle Slot

  • Li, Xiao;Lee, Seung-Woo;Kim, Nam;Kim, Chul-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.207-212
    • /
    • 2011
  • This paper presents a CPW-fed antenna with three slots. The proposed antenna can operate at 1.9~2.1 GHz and 2.9~3.3 GHz which are generated by the two rectangular slots, and 4.5~11.6 GHz which is generated by the main patch. The semicircle-slot is used as a band-notched filter to stop at a desired band (5.150~5.825 GHz) limited by IEEE 802.11a or HIPERLAN/2 applications. The currents concentrate around corresponding slots at the desired band. The proposed antenna is very small in size, with overall dimensions of $27{\times}32{\times}1\;mm^3$ etched onto an FR4-printed circuit board (PCB).

Design of Antenna for UWB Application notched WLAN-Band (무선랜 대역 저지특성을 갖는 UWB 안테나 설계)

  • Kim, Kab-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.714-719
    • /
    • 2009
  • In this paper, a compact antenna with band-rejected characteristic for Ultra-Wideband(UWB) applications is proposed. The designed antenna not only shows sufficient impedance bandwidth but has band-rejected characteristic for the frequency band of 5.15~5.825GHz limited by IEEE 802.11a and HIPERLAN/2. To obtain both properties of wideband band rejection, the techniques of a partial ground plane and embedded thin U-slot into planar radiator are used respectively. A designed antenna satisfied a VSWR less than 2:1 for the frequency band of 3.1~10.3GHz with band rejection of 4.90~5.92GHz.

  • PDF

A Design and Implementation of CPW-fed Antenna with Two Branch Strip for WLAN Applications (WLAN 적용을 위한 두 개의 분기 선로를 갖는 CPW 급전 모노폴 안테나의 설계와 제작)

  • Yoon, Joong-Han;Choi, Young-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.441-448
    • /
    • 2015
  • In this paper, a CPW-fed dual-band monopole antenna with two branch strips for WLAN(Wireless Local Area Networks) applications was designed, fabricated and measured. The proposed antenna is based on a CPW-feeding structure, and composed of two branch strips and then designed and tuned the length of two branch lines to obtained required frequencies bands. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS) and carried out simulation about parameters $L_5$, $L_8$, $W_3$, $W_5$, $W_9$. The proposed antenna is fabricated on the FR-4 substrate using the obtained parameters. The numerical and experiment results demonstrated that the proposed antenna obtained the -10 dB impedance bandwidth 1,095 MHz (1.57~2.665 GHz) for 2.4 GHz band and 1,680 MHz (4.99~6.67 GHz) for 5 GHz band satisfied requirement while simultaneously covering the WLAN bands. And characteristics of gain and radiation patterns are determined for WLAN operating bands.

Compact CPW-Fed Antenna with Triple Folded Patch for WLAN Applications (WLAN 시스템에 적용 가능한 삼중 폴디드 패치를 가진 CPW 급전 소형 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.777-782
    • /
    • 2015
  • In this paper, the compact CPW-fed antenna with triple folded patch for dual-band WLAN applications is proposed. As the conventional double inverted-L antenna is changed into the C-shaped patch and double inverted-L antenna, the antenna overcomes the narrow-band characteristics according to the miniaturization of the antenna. The proposed antenna with the size of only $16.5mm{\times}29.5mm{\times}1.0mm$ is designed and fabricated by optimized parameters to be operated at 2.4 GHz band and 5 GHz band. The antenna is fabricated into FR-4 substrate with thickness of 1.0 mm. We confirm that it is operated as antenna for WLAN applications by obtaining the measured return loss level of < -10 dB at dual-band.

A Ku-band 3 Watt PHEMT MMIC Power Amplifier for satellite communication applications (위성 통신 응용을 위한 Ku-대역 3 Watt PHEMT MMIC 전력 증폭기)

  • Uhm, Won-Young;Lim, Byeong-Ok;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1093-1097
    • /
    • 2020
  • This work describes the design and characterization of a Ku-band monolithic microwave integrated circuit (MMIC) power amplifier (PA) for satellite communication applications. The device technology used relies on 0.25 ㎛ gate length gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (PHEMT) of wireless information networking (WIN) semiconductor foundry. The developed Ku-band PHEMT MMIC power amplifier has a small-signal gain of 22.2~23.1 dB and saturated output power of 34.8~35.4 dBm over the entire band of 13.75 to 14.5 GHz. Maximum saturated output power is a 35.4 dBm (3.47 W) at 13.75 GHz. Its power added efficiency (PAE) is 30.6~37.83% and the chip dimensions are 4.4 mm×1.9 mm. The developed 3 W PHEMT MMIC power amplifier is expected to be applied in a variety of Ku-band satellite communication applications.

A CMOS Downconversion Mixer for 2.4GHz ISM band Applications

  • Lee, Seong-Woo;Chae, Yong-Doo;Woong Jung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.77-81
    • /
    • 2002
  • This paper demonstrates a CMOS downconversion mixer for 2.4GHz ISM band applications. The mixer, implemented in a 0.18um CMOS process, is based on the CMOS Gilbert Cell mixer, With a 2.5GHz local oscillator and a 2.45GHz RF input, the measurement results exhibit power conversion gam of -6dB, IIP3 of -6dBm, input $P_{-1dB}$ of -15 dBm, and power dissipation in mixer core of 2.7 mW with 0㏈m LO power and 1.8V supply voltage.

  • PDF

Compact Mobile Quad-Band Slot Antenna Design for GPS L1, WiMAX, and WLAN Applications

  • Piao, Haiyan;Jin, Yunnan;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.57-64
    • /
    • 2017
  • In this paper, an asymmetric compact multiband slot antenna is proposed for global positioning system (GPS), worldwide interoperability for microwave access (WiMAX), and wireless area network (WLAN) applications. The top plane, a ground is composed of a rectangular slot with a trapezoidal-like stub, an inverted U-shaped slot at the right side of the rectangular slot, an inverted L-shaped slot at the left side of the rectangular slot, and three stubs. The proposed antenna is fed by an asymmetric cross-parasitic strip on the bottom plane. By properly designing the slots and stubs, four resonant frequency bands are achieved with -10 dB reflection coefficient bandwidths of 50 MHz, 400 MHz, 390 MHz, and 830 MHz in the 1.57 GHz GPS band, 2.4 GHz WLAN band, 3.5 GHz WiMAX band, and 5.5 GHz WLAN bands, respectively. The antenna has a total compact size of $13mm{\times}32mm{\times}0.8mm$. Simulated and measured results indicate that the proposed antenna has sufficient bandwidth and good radiation performance in each band.

Design and Fabrication of A Dual-band Open-Ended Circular Ring MoNopole Antenna for WLAN Applications (이중 공진을 갖는 WLAN용 끝이 개방된 원형 링 모노폴 안테나의 설계와 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.987-994
    • /
    • 2013
  • In this paper, a dual-band open-ended circular ring moNopole antenna for WLAN(Wireless Local Area Networks) applications. The proposed antenna is based on a planar moNopole design, and composed of open-ended one circular ring of radiating patches for dual-band operation. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS) and found the parameters that effect antenna characteristics. Using the obtained parameters, the proposed antenna is fabricated. The fabricated antenna is measured at the operating frequencies(2.4-2.484 GHz, 5.15-5.825 GHz), and the return loss coefficient, gain, and radiation patterns are determined.

A Compact CPW-fed Antenna with Step Structure for 5 GHz Band WLAN Applications (계단구조를 갖는 5 GHz 대역 무선랜용 소형 CPW 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • In this paper, a compact CPW-fed antenna for 5 GHz (5.15-5.35 GHz, 5.725-5.825 GHz) band WLAN applications is presented. The designed antenna's shape is step structure. The antenna is fabricated and measured into FR-4 substrate of dielectric comstant 4.2 and thickness 1.0 mm with optimized parameters obtained by simulation. We confirm that it is operated as antenna for WLAN applications by obtaining the measured return loss level of < -10 dB in 5.133-5.982 GHz. The dimensions of the antenna ($20.0{\times}16.0{\times}1.0mm^3$) shows an compactness of about 67.17% with respect to a conventional folded slot antenna.