• 제목/요약/키워드: 2.45GHz microwave plasma

검색결과 19건 처리시간 0.022초

The Effects of CF4 Partial Pressure on the Hydrophobic Thin Film Formation on Carbon Steel by Surface Treatment and Coating Method with Linear Microwave Ar/CH4/CF4 Plasma

  • Han, Moon-Ki;Cha, Ju-Hong;Lee, Ho-Jun;Chang, Cheol Jong;Jeon, Chang Yeop
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.2007-2013
    • /
    • 2017
  • In order to give hydrophobic surface properties on carbon steel, the fluorinated amorphous carbon films were prepared by using linear 2.45GHz microwave PECVD device. Two different process approaches have been tested. One is direct deposition of a-C:H:F films using admixture of $Ar/CH_4/CF_4$ working gases and the other is surface treatment using $CF_4$ plasma after deposition of a-C:H film with $Ar/CH_4$ binary gas system. $Ar/CF_4$ plasma treated surface with high $CF_4$ gas ratio shows best hydrophobicity and durability of hydrophobicity. Nanometer scale surface roughness seems one of the most important factors for hydrophobicity within our experimental conditions. The properties of a-C:H:F films and $CF_4$ plasma treated a-C:H films were investigated in terms of surface roughness, hardness, microstructure, chemical bonding, atomic bonding structure between carbon and fluorine, adhesion and water contact angle by using atomic force microscopy (AFM), nano-indentation, Raman analysis and X-ray photoelectron spectroscopy (XPS).

Hydrophobic and Mechanical Characteristics of Hydrogenated Amorphous Carbon Films Synthesized by Linear Ar/CH4 Microwave Plasma

  • Han, Moon-Ki;Kim, Taehwan;Cha, Ju-Hong;Kim, Dong-Hyun;Lee, Hae June;Lee, Ho-Jun
    • Applied Science and Convergence Technology
    • /
    • 제26권2호
    • /
    • pp.34-41
    • /
    • 2017
  • A 2.45 GHz microwave plasma with linear antenna has been prepared for hydrophobic and wear-resistible surface coating of carbon steel. Wear-resistible properties are required for the surface protection of cutting tools and achieved by depositing a hydrogenated amorphous carbon film on steel surface through linear microwave plasma source that has $TE_{10}-TEM$ waveguide. Compared to the existing RF plasma source driven by 13.56 MHz, linear microwave plasma source can easily generate high density plasma and provide faster deposition rate and wider process windows. In this study, $Ar/CH_4$ gas mixtures are used for hydrogenated amorphous carbon film deposition. When microwave power of 1000 W is applied, 40 cm long uniform $Ar/CH_4$ plasma could be obtained in gas pressure of 200~400 mTorr. The Vickers hardness measurement of hydrogenated amorphous carbon film on steel surface was evaluated. It was found the optimized deposition condition at $Ar:CH_4=25:25$ sccm, 300 mTorr with microwave power of 1000W and RF bias power of 100W. By deposition of hydrogenated amorphous carbon film, contact angle on steel surfaces increases from $43.9^{\circ}$ to $93.2^{\circ}$.

도파관식 고출력 헬륨 플라즈마의 개발과 분광학적 특성 연구 (Development and spectroscopic characteristics of the high-power wave guide He Plasma)

  • 이종만;조성일;우진춘;박용남
    • 분석과학
    • /
    • 제25권5호
    • /
    • pp.265-272
    • /
    • 2012
  • 기존의 Okamoto cavity를 변형시킨 WR-340 도파관을 사용한 cavity를 제작하고 고출력(2.45 GHz, 2 kW)의 헬륨, 질소 및 아르곤 마이크로파 플라즈마(MIP; Microwave Induced Plasma)를 성공적으로 형성시켰다. 플라즈마 생성의 주요한 요인들은 내부전도체의 직경과 내부전도체와 외부전도체간의 간격, 내부전도체 끝과 토치의 위치 등이 있으며 그 중 헬륨 마이크로파 플라즈마에 대하여 cavity의 디자인을 최적화시키고 그 특성을 조사하였다. ICP(Inductively Coupled Plasma)용 mini 토치와 자체 제작한 나선형흐름토치를 비교 연구한 결과, 헬륨 플라즈마 기체 흐름량은 약 25 L/min~30 L/min로서 서로 비슷하였다. 토치 상단부에 석영관을 덧씌워 공기유입을 막은 결과, 340 nm 근처의 NH분자선들이 없어지거나 감소하였다. 플라즈마의 온도 및 전자밀도를 측정한 결과, 4,350 K의 들뜸 온도와 $3.67{\times}10^{11}/cm^3$의 전자밀도를 얻었다. 이 값들은 기존의 다른 마이크로파 플라즈마와 비슷하거나 약간 작은 값이다. 고출력의 플라즈마로서 수용액을 직접 분석하는 것이 가능하였고 현재 Cl의 검출한계는 116 mg/L 수준으로서 아직 분석적인 최적화가 필요한 단계이다.

산소 플라즈마로 표면처리된 탄소섬유/에폭시 적층복합재의 전단거동 (Shear Behavior of Plasma-treated Graphite/Epoxy Laminated Composites Using Oxygen Gas)

  • 김민호;이경엽;백영남;정동호;김현주
    • 한국정밀공학회지
    • /
    • 제25권9호
    • /
    • pp.103-108
    • /
    • 2008
  • In-plane shear tests were performed to investigate the shear property change of FRP by plasma modification. Graphite/epoxy prepreg was used as a test material and plasma source was a microwave (2.4GHz) type. Plasma was induced by oxygen gas and its flow rate was kept $4{\sim}5$sccm with low vacuum state of $10^{-3}$ Torr. Prepreg was stacked unidirectionally ($[0^0]_8$) after plasma modification. Wettability was determined by measuring a contact angle. The results showed that the contact angle was decreased from $86^0$ to $45^0$ after plasma modification. Shear strength was also improved by ${\sim}10%$. SEM examination was made on the fracture surface and functional group produced by the plasma modification was investigated by XPS.

Experimental Research of an ECR Heating with R-wave in a Helicon Plasma Source

  • Ku, Dong-Jin;An, C.Y.;Park, Min;Kim, S.H.;Wang, S.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.274-274
    • /
    • 2012
  • We have researched on controlling an electron temperature and a plasma collision frequency to study the effect of collisions on helicon plasmas. So, we have designed and constructed an electron cyclotron resonance (ECR) heating system in the helicon device as an auxiliary heating source. Since then, we have tried to optimize experimental designs such as a magnetic field configuration for ECR heating and 2.45GHz microwave launching system for its power transfer to the plasma effectively, and have characterized plasma parameters using a Langmuir probe. For improving an efficiency of the ECR heating with R-wave in the helicon plasma, we would understand an effect of R-wave propagation with ECR heating in the helicon plasma, because the efficiency of ECR heating with R-wave depends on some factors such as electron temperature, electron density, and magnetic field gradient. Firstly, we calculate the effect of R-wave propagation into the ECR zone in the plasma with those factors. We modify the magnetic field configuration and this system for the effective ECR heating in the plasma. Finally, after optimizing this system, the plasma parameters such as electron temperature and electron density are characterized by a RF compensated Langmuir probe.

  • PDF

나노결정질 다이아몬드가 코팅된 SiC 마모시험기 볼 (Nanocrystalline Diamond Coated SiC Balls in Tribometer)

  • 임종환;강찬형
    • 한국표면공학회지
    • /
    • 제47권5호
    • /
    • pp.263-268
    • /
    • 2014
  • Nanocrystalline diamond(NCD) coated SiC balls were applied in a ball-on-disk tribometer. After seeding in an ultrasonic bath containing nanometer diamond powders, $2.2{\mu}m$ thick NCD films were deposited on sintered 3 mm diameter SiC balls at $600^{\circ}C$ in a 2.45 GHz microwave plasma CVD system. Bare $ZrO_2$ and SiC balls were prepared for comparison as test balls. Tribology tests were performed in air with pairs of three different balls and mirror polished steel(SKH51) disk. The wear tracks on balls and disks were examined by optical microscope and alpha step profiler. Under the load of 3 N, the friction coefficients of steel against $ZrO_2$, SiC and NCD-coated balls were between 0.4 and 0.8. After a few thousands sliding laps, the friction coefficient of NCD-coated balls dropped from 0.45 to below 0.1 and maintained thereafter. Under a higher load of 10 N or 20 N with a long sliding distance of 2 km, $ZrO_2$ and SiC balls exhibited the similar friction coefficients as above. The friction coefficient of NCD-coated balls was less than 0.1 from the beginning and increased to above 0.1 steadily or with some fluctuations as sliding distance increased. NCD coating layers were found worn out after long duration and/or high load sliding test, which resulted in the friction coefficient higher than 0.1.

고출력 마그네트론 구동용 3.6 MW, 4 ${\mu}s$, 200 pps 펄스모듈레이터 개발 (Development of 3.6 MW, 4 ${\mu}s$, 200 pps Pulse Modulator for a High power magnetron)

  • 손윤규;장성덕;오종석;조무현;남궁원;이한구;배영순;이경태;손병학
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1778-1780
    • /
    • 2004
  • Microwave heating system of KSTAR consists of ECH and LHCD. ECH and LHCD offer the reliability of operation in the beginning of plasma formation and non-inductive current drive for long time steady state operation with maintaining MHD stability, respectively. LHCD demands 5 GHz of frequency and consists of c-band waveguide, 4-port circuitor, dry dummy load, dual directional coupler, E-bend, arc detector. Our system is a lineup type pulse modulator that has 45 kV of output pulse voltage, 90 A of pulse current, 4 us of pulse width. 1:4 step-up pulse transformer, 7 stages of PFN and thyratron tube (E2V, CX1191D) are used in this modulator. The purpose of this paper is to show the modulator design and experimental result.

  • PDF

저온 증착된 불소도핑 주석 산화 박막의 광학적·전기적 특성 (Optical and Electrical Properties of Fluorine-Doped Tin Oxide Prepared by Chemical Vapor Deposition at Low Temperature)

  • 박지훈;전법주
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.517-524
    • /
    • 2013
  • The electrical and optical properties of fluorine-doped tin oxide films grown on polyethylene terephthalate film with a hardness of 3 using electron cyclotron resonance plasma with linear microwave of 2.45 GHz of high ionization energy were investigated. Fluorine-doped tin oxide films with a magnetic field of 875 Gauss and the highest resistance uniformity were obtained. In particular, the magnetic field could be controlled by varying the distribution in electron cyclotron deposition positions. The films were deposited at various gas flow rates of hydrogen and carrier gas of an organometallic source. The surface morphology, electrical resistivity, transmittance, and color in the visible range of the deposited film were examined using SEM, a four-point probe instrument, and a spectrophotometer. The electromagnetic field for electron cyclotron resonance condition was uniformly formed in at a position 16 cm from the center along the Z-axis. The plasma spatial distribution of magnetic current on the roll substrate surface in the film was considerably affected by the electron cyclotron systems. The relative resistance uniformity of electrical properties was obtained in film prepared with a magnetic field in the current range of 180~200A. SEM images showing the surface morphologies of a film deposited on PET with a width of 50 cm revealed that the grains were uniformly distributed with sizes in the range of 2~7 nm. In our experimental range, the electrical resistivity of film was able to observe from $1.0{\times}10^{-2}$ to $1.0{\times}10^{-1}{\Omega}cm$ where optical transmittance at 550 nm was 87~89 %. These properties were depended on the flow rate of the gas, hydrogen and carrier gas of the organometallic source, respectively.

초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과 (Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate)

  • 나봉권;강찬형
    • 한국표면공학회지
    • /
    • 제46권2호
    • /
    • pp.68-74
    • /
    • 2013
  • For the coating of diamond films on WC-Co tools, a buffer interlayer is needed because Co catalyzes diamond into graphite. W and Ti were chosen as candidate interlayer materials to prevent the diffusion of Co during diamond deposition. W or Ti interlayer of $1{\mu}m$ thickness was deposited on WC-Co substrate under Ar in a DC magnetron sputter. After seeding treatment of the interlayer-deposited specimens in an ultrasonic bath containing nanometer diamond powders, $2{\mu}m$ thick nanocrystalline diamond (NCD) films were deposited at $600^{\circ}C$ over the metal layers in a 2.45 GHz microwave plasma CVD system. The cross-sectional morphology of films was observed by FESEM. X-ray diffraction and visual Raman spectroscopy were used to confirm the NCD crystal structure. Micro hardness was measured by nano-indenter. The coefficient of friction (COF) was measured by tribology test using ball on disk method. After tribology test, wear tracks were examined by optical microscope and alpha step profiler. Rockwell C indentation test was performed to characterize the adhesion between films and substrate. Ti and W were found good interlayer materials to act as Co diffusion barriers and diamond nucleation layers. The COFs on NCD films with W or Ti interlayer were measured as less than 0.1 whereas that on bare WC-Co was 0.6~1.0. However, W interlayer exhibited better results than Ti in terms of the adhesion to WC-Co substrate and to NCD film. This result is believed to be due to smaller difference in the coefficients of thermal expansion of the related films in the case of W interlayer than Ti one. By varying the thickness of W interlayer as 1, 2, and $4{\mu}m$ with a fixed $2{\mu}m$ thick NCD film, no difference in COF and wear behavior but a significant change in adhesion was observed. It was shown that the thicker the interlayer, the stronger the adhesion. It is suggested that thicker W interlayer is more effective in relieving the residual stress of NCD film during cooling after deposition and results in stronger adhesion.