• Title/Summary/Keyword: 2.4/5GHz Dual Band

Search Result 158, Processing Time 0.024 seconds

Design of Dual-band Metamaterial Absorber using Two Pairs of ELC Resonators (두 쌍의 ELC 공진기를 이용한 이중 대역 메타 흡수체의 설계)

  • Lee, Hyung-Sup;Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This paper presents a metamaterial absorber unit sell structure with four-element electric-LC resonators (ELC). In order to enhance the operating bandwidth of the proposed absorber unit cell two pairs of ELC resonators with a different size are used. The proposed unit cell shows negative permittivity and permeability when the electric field is parallel to the capacitive gap and the magnetic field is normal to the plane of ELC resonator. The simulated results show peak absorbance over 90% at two frequencies of 8.53 and 9.08 GHz, respectively.

Broadband Mixer with built-in Active Balun for Dual-band WLAN Applications (이중대역 무선랜용 능동발룬 내장 광대역 믹서 설계)

  • Lee, Kang-Ho;Koo, Kyung-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.261-264
    • /
    • 2005
  • This paper presents the design of a down-conversion mixer with built-in active balun integrated in a $0.25\;{\mu}m$ pHEMT process. The active balun consists of series-connected common-gate FET and common-source FET. The designed balun achieved broadband characteristics by optimizing gate-width and bias condition for the reduction in parasitic effect. From DC to more than 6GHz, the active balun shows the phase error of less than 3 degree and the gain error of less than 0.4 dB. A single-balanced down-conversion mixer with built-in broadband active balun has been designed with optimum width, load resistor and bias for conversion gain and without any matching component for broadband operating. The designed mixer whose size of including on-chip bias circuit is $1\;mm{\times}1\;mm$ shows the conversion gain of better than 7 dB from 2 GHz to 6 GHz and $P_{1dB}$ of -10 dBm at 5.8 GHz

  • PDF

A study on the design of an Dual Inverted-F Internal Antenna for the WLAN`s Band (WLAN대역의 듀얼 역-F형 내부 안테나 설계에 관한 연구)

  • Kang, Jeong-Jin;Kang, Seo;Jeung, Seung-Il;Kim, Wan-Sik;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.223-229
    • /
    • 2003
  • In this thesis, the characteristics of an inverted-F antenna for the 2.4GHz and 5.8GHz zwirless local area network(WLAN) have been analysed in terms of the variation of design parameters. The antenna can be integrated on WLAN for notebook printed circuit board, and the characteristics in terms of the variation of the gap between feed line and shorting stub, gap between antenna's leg and ground plane, antenna leg's width, substrate's height and dielectric constant are analysed. By using these characterization plot of design parameter, the tuning techniques are proposed to design optimum antenna. The designed antenna has 170MHz, 500MHz frequency bandwidth ,VSWR is 1.6, 1.14 and 3.5dBi gain.

  • PDF

Implementation of DS-UWB Impulse Generator with Suppression of Frequency Band for WLAN (WLAN 주파수 대역이 억제된 DS-UWB 임펄스 생성기 구현)

  • Park, Chong-Dae;Kim, Bum-Joo;Kim, Dong-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • In this paper, Gaussian impulse generator for DS-UWB was proposed and fabricated so that the frequency band allocated to WLAN, around 5 GHz, was suppressed in accordance with the regulation of radiation spectrum limitation defined by FCC. In order to transform an unipolar rectangular signal to a Gaussian impulse, the proposed impulse generator consists of two stage impulse generation parts; the first stage using dual SRD and the second stage using gain switching of semiconductor laser diode. The result shows a gaussian impulse as narrow as 180 psec in width. In addition, high order derivative Gaussian filter with a structure of 4 stage ring resonators was designed and fabricated so that DS-UWB impulse generator could reduce the frequency spectrum of WLAN by 25 dB compared to the spectral power of th adjacent UWB band.

  • PDF

Implementation of Small Size Dual Band PAM using LTCC Substrates (LTCC를 이용한 Small Size Dual Band PAM의 구현)

  • Shin, Yong-Kil;Chung, Hyun-Chul;Lee, Joon-Geun;Kim, Dong-Su;Yoo, Jo-Shua;Yoo, Myong-Jae;Park, Seong-Dae;Lee, Woo-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.357-358
    • /
    • 2005
  • Compact power amplifier modules (PAM) for WCDMA/KPCS and GSM/WCDMA dual-band applications based on multilayer low temperature co-fired ceramic (LTCC) substrates are presented in this paper. The proposed modules are composed of an InGaP/GaAs HBT PAs on top of the LTCC substrates and passive components such as RF chokes and capacitors which are embedded in the substrates. The overall size of the modules is less than 6mm $\times$ 6mm $\times$ 0.8mm. The measured result shows that the PAM delivers a power of 28 dBm with a power added efficiency (PAE) of more than 30 % at KPCS band. The adjacent-channel power ratio (ACPR) at 1.25-MHz and 2.25-MHz offset is -44dBc/30kHz and -60dBc/30kHz, respectively, at 28-dBm output power. Also, the PAM for WCDMA band exhibits an output power of 27 dBm and 32-dB gain at 1.95 GHz with a 3.4-V supply. The adjacent-channel leakage ratio (ACLR) at 5-MHz and 10-MHz offset is -37.5dBc/3.84MHz and -48dBc/3.84MHz, respectively. The measured result of the GSM PAM shows an output power of 33.4 dBm and a power gain of 30.4 dB at 900MHz with a 3.5V supply. The corresponding power added efficiency (PAE) is more than 52.6 %.

  • PDF

Dual Bias Modulator for Envelope Tracking and Average Power Tracking Modes for CMOS Power Amplifier

  • Ham, Junghyun;Jung, Haeryun;Bae, Jongsuk;Lim, Wonseob;Hwang, Keum Cheol;Lee, Kang-Yoon;Park, Cheon-Seok;Yang, Youngoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.802-809
    • /
    • 2014
  • This paper presents a dual-mode bias modulator (BM) for complementary metal oxide semiconductor (CMOS) power amplifiers (PAs). The BM includes a hybrid buck converter and a normal buck converter for an envelope tracking (ET) mode for high output power and for an average power tracking (APT) mode for low output power, respectively. The dual-mode BM and CMOS PA are designed using a $0.18-{\mu}m$ CMOS process for the 1.75 GHz band. For the 16-QAM LTE signal with a peak-to-average power ratio of 7.3 dB and a bandwidth of 5 MHz, the PA with the ET mode exhibited a poweradded efficiency (PAE) of 39.2%, an EVM of 4.8%, a gain of 19.0 dB, and an adjacent channel leakage power ratio of -30 dBc at an average output power of 22 dBm, while the stand-alone PA has a PAE of 8% lower at the same condition. The PA with APT mode has a PAE of 21.3%, which is an improvement of 13.4% from that of the stand-alone PA at an output power of 13 dBm.

Development of 3.6 MW, 4 ${\mu}s$, 200 pps Pulse Modulator for a High power magnetron (고출력 마그네트론 구동용 3.6 MW, 4 ${\mu}s$, 200 pps 펄스모듈레이터 개발)

  • Son, Y.G.;Jang, S.D.;Oh, J.S.;Cho, M.H.;NamKang, W.;Lee, H.K.;Bae, Y.S.;Lee, K.T.;Son, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1778-1780
    • /
    • 2004
  • Microwave heating system of KSTAR consists of ECH and LHCD. ECH and LHCD offer the reliability of operation in the beginning of plasma formation and non-inductive current drive for long time steady state operation with maintaining MHD stability, respectively. LHCD demands 5 GHz of frequency and consists of c-band waveguide, 4-port circuitor, dry dummy load, dual directional coupler, E-bend, arc detector. Our system is a lineup type pulse modulator that has 45 kV of output pulse voltage, 90 A of pulse current, 4 us of pulse width. 1:4 step-up pulse transformer, 7 stages of PFN and thyratron tube (E2V, CX1191D) are used in this modulator. The purpose of this paper is to show the modulator design and experimental result.

  • PDF

Implementation of A Millimeter-Wave Multiflare-Angle Horn Antenna (밀리미터파 다중개구각 혼안테나 구현)

  • Oh, Kyung-Hyun;Kim, Ji-Hyung;Yang, Seung-Sik;Shin, Sang-Jin;Cho, Young-Ho;Lee, Byung-Ryul;Ahn, Bierng-Chearl
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.36-41
    • /
    • 2018
  • This paper presents an implementation of a millimeter-wave(W band) multiflare-angle horn antenna. The proposed antenna is a multimode dual-polarized square horn having equal E- and H-plane beamwidths and consists of a multimode generating section, a four-square-waveguide exciter, orthomode transducers, and power combiners for the sum pattern formation. The antenna structure has been designed to allow for easy fabrication and the designed antenna has been fabricated to a precision of ${\pm}0.02mm$ by layer-by-layer machining and diffusion bonding. The input reflection coefficient and the radiation pattern of the fabricated antenna have been measured using a network analyzer and a far-field test facility. Measurements show that the proposed antenna has 17.7~18.3 dBi gain, $25.2{\sim}28.5^{\circ}$ beamwidth, and an input VSWR between 1.02~1.75, within ${\pm}0.5GHz$ from the center frequency.