• Title/Summary/Keyword: 2.1GHz band

Search Result 1,183, Processing Time 0.028 seconds

A Design of X-Band Microstrip Array Antenna (X대역 마이크로스트립 배열 안테나)

  • Kim, Min-Joon;Cheon, I-Hwan;Kim, Ju-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.860-867
    • /
    • 2009
  • In this paper, we designed the array antenna for FMCW radar in X - band frequency, and we chose stacked structure for improvement of narrow bandwidth. The array antenna is implemented on the circuit board which is relative permittivity 2.33 and the stacked patchs are designed on the circuit board which is relative permittivity 4.6. A Foam which has a similar permittivity of air is added to keep the particular gap between array antenna and the stacked patch. The result of array antenna has characteristics that a half-power beam width is $10.6^{\circ}$ and antenna gain is 18.70 dBi and bandwidth is 1.25GHz at the design frequency of 9GHz. The result of the array antenna with the stacked structure has that the half power beam width is $15.17^{\circ}$ and the antenna gain is 15.85dBi and bandwidth is 2GHz. It is needed to improve the antenna gain as keeping bandwidth in same level.

Compact UWB Band-pass Filter with Open-Stub Using Impedance Mismatching and SIR (임피던스 부정합 및 SIR을 적용한 개방형 광대역 소형 스터브 대역통과 여파기)

  • Lee, Won-Seok;Yoon, Ki-Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.282-289
    • /
    • 2014
  • In this paper, the UWB (Ultra Wide Band) band-pass filter (BPF) with compact-size using impedance mismatching in transmission line and SIR (Stepped Impedance Resonator) instead of open stubs is presented. The proposed BPF have 103 % of bandwidth and 11.2 GHz of center frequency, respectively. In additional, the operation frequencies of the suggested BPF are 4.8 GHz to 16 GHz. In this structure, the length of the transmission line is reduced to half compared with the original one by impedance mismatching technique with low frequency band (sub harmonics) and harmonic components. Also, the open stub can be used for SIR due to reduced size. Experimental results show that the insertion and return losses are 0.35 dB and 15.1 dB, respectively and the filter size is $8.92{\times}10.6mm^2$. The proposed BPF is in good agreement.

Wide Band Microstrip line-to-Rectangular Waveguide Transition Using a Radial Probe for Millimeter-wave Applications (밀리미터파 응용을 위해 Radial 프로브 마이크로 스트립-웨이브 가이드 광대역 천이기)

  • Lee, Young Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.43-47
    • /
    • 2015
  • In this work, a broadband microstrip (MSL) - to - waveguide (WR12) transition has been presented for millimeter-wave module applications. For improvement of a bandwidth, the radial MSL electrical-probe is designed on the low-loss organic dielectric substrate. The designed and tested characteristics of the proposed transition are characterized in terms of an insertion and return loss. Considering the loss contribution of the cable adapter and waveguide transition for the measurement, the proposed transition loss can be analyzed as -1.88 and -2.01 dB per a transition at 70 and 80 GHz, respectively. The bandwidth of the proposed transition for reflection at -10 dB is 26 GHz at all test frequencies from 67 to 95 GHz. Compared to the state-of-the-art results, improvement of 8.3 % is achieved for the operation bandwidth.

Design and Manufacture of Triple-BandWidth Antennas for WLAN / WiMAX system (WLAN/WiMAX를 지원하는 삼중대역 안테나 설계 및 제작)

  • Park, Won-Young;Eom, Hye-Gyeong;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.338-346
    • /
    • 2018
  • In this paper, a monopole antenna applicable to WLAN/WiMAX system is designed and fabricated. The proposed antenna is designed to have three lines and one slit based on microstrip feeding to have triple band characteristics. We optimized the lengths and slits of the three lines to obtain the required characteristics for this paper. The proposed antenna has $32.0mm(W2+W3){\times}47.1mm$ (L3+L4+L5+L8) on a dielectric substrate of $42.5mm(W1){\times}52mm(L1){\times}1.0mm$ size. From the fabrication and measurement results, bandwidths of 158 MHz (813 to 971MHz), 630 MHz (2.10 to 2.73GHz) and 1190 MHz (4.83 to 6.02GHz) were obtained based on the impedance bandwidth. The fabricated antenna also obtained the measured gain and radiation pattern in the required triple band.

Design of Multi-band Ceramic Chip Antenna for WLAN using LTCC Technology (LTCC 공정기술을 이용한 무선랜용 다중대역 칩 안테나 설계)

  • 박영호;이용기;이윤도;이상원;천창율
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.443-446
    • /
    • 2004
  • In this paper, a multi-band ceramic chip antenna for WLAN(Wireless LAN) applications is designed. The design target is to obtain 0 dBi of coverage gain with omni directional radiation pattern. The antenna is fabricated using Low Temperature Co-fired Ceramic(LTCC) technology. The size of the chip antenna is $2.2{\times}9.65{\times}1.02$mm. The measured antenna gain is 1 dBi at 2.44 GHz and 0.5 dBi at 5.5 GHz. The omni directional radiation pattern for the two operating bands is obtained. The measured bandwidth(S11=-10 dB) are 90 MHz at 2.44 GHz and 1280 MHz at 5.5 GHz respectively

Physical Layer Design of Dual-Band Guardian Modem based on Quasi-Orthogonal Code (유사 직교 부호 기반 이중 대역 Guardian 모뎀의 물리계층 설계)

  • Lee, Hyeon-Seok;Cho, Jin-Woong;Hong, Dae-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.127-132
    • /
    • 2013
  • In this paper, we design the physical layer of Guardian modem for wireless public networks. The physical layer is composed of a dual-band RF (Radio Frequency) transceiver and a baseband-processor with quasi-orthogonal codes. The 2.4/5GHz dual-band RF transceiver can overcome the communication difficulty of dense 2.4GHz band for wireless public environment. Also the quasi-orthogonal code can reduce the required ASIC (Application Specific Integrated Circuit) design area. Finally, we analyze the performance of the developed system in viewpoint of data rate, BER (Bit Error Rate), PER (Packet Error Rate). Moreover we verify the performance of the dual-band RF communication.

Design and Fabrication of Bow-tie-shaped Meander Microstrip Patch Antenna on 5GHz Application (5GHz 대역에서 동작하는 보우타이 모양의 미앤더 마이크로스트립 안테나의 설계 및 제작)

  • Kwak Sang hun;Yoon Joong han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.312-319
    • /
    • 2005
  • In this paper, a meander-type microstrip patch antenna for application in 5GHz-band is designed and fabricated. To obtain enough bandwidth in VSWR<2, the foam is inserted between substrate and ground plane, the coaxial probe source is used. Antenna is simulated varing the length and width of meander line, the position of probe feeding and the thick of airgap. Later anterlna is fabricated with optimizated antenna parameter. The measured result of Fabricated antenna obtained $1GHz(17.5\%)$ bandwidth in VSWR<2$, the gain of $.3\sim9.5$dBi, Unidirectional pattern.

Propagation Characteristics of GIS PD Signals by Dual UHF Band Method (2)

  • Choi, Jae-Gu;Yi, Sang-Hwa;Kim, Kwang-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.136-139
    • /
    • 2004
  • It is widely known that the ultra high frequency (UHF) method that detects the electromagnetic wave of the PD pulses in the gas insulated space is one of the most competitive methods for its high sensitivity. From the above point of view, this paper describes the propagation characteristics of GIS PD signals measured with ultra wide band (UWB) GIS PD detecting system in which PD signals are detected into the dual UHF band. The UWB PD detection system consists of the UWB UHF coupler, the UWB low noise amplifier (LNA) and the oscilloscope. The dual bands for PD signals are 0.5-2GHz(full band) and 1-2GHz(high band). As results, propagation characteristics of GIS PD signals were measured in the mock-up GIS bus and it was found that the propagation characteristics of the high band showed a better result in accordance with the infernal configuration of the GIS bus than those of the full band.

  • PDF

Design and Fabrication of Modified Monopole Antenna for Wireless USB Dongle with WLAN system Applications (WLAN 시스템 적용 가능한 무선 USB 동글용 변형된 모노폴 안테나의 설계 및 제작)

  • Lee, Yeong-Seong;Mun, Seung-Min;Kim, Gi-Rae;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2223-2231
    • /
    • 2015
  • In this paper, we propose a built-in antenna for wireless USB dongle which has a modified structure from the existing planar monopole antenna. The proposed antenna implemented a dual-band characteristic by inserting Strip1, Strip2, Strip3 into the monopole structure combined with 'n' shape and feeded 50-Ω using coaxial cable. The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.6, and its overall size is 10 mm × 50 mm × 1mm. Based on the measurement results of the return loss, it was confirmed to satisfy the dual band resonance characteristics of 740 MHz (2.3 ~ 2.7 GHz) and 1,200 MHz (5.15 ~ 5.825 GHz) by -10 dB. In addition, we obtain the omni-directional radiation pattern measurements in the operating frequency bands, and the maximum gain of the proposed antenna has 2.26~3.81 dBi in the 2.4 GHz band and 2.21~5.79 dBi. in the 5.5 GHz band, respectively.

3-Port Circulator for X-Band Radar (X-Band 레이더를 위한 3-포트 서큘레이터)

  • Yoon, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.355-362
    • /
    • 2015
  • In this study, we have fabricated 9.385[GHz] circulator that is composed of WR112 waveguide and Ferrite for X-band radar. For designing Ferrite, B/R mode(Below Resonance mode) was used and calculated the condition of 120 degree rotation of the electric field in Ferrite and calculated internal DC magnetic field and external DC magnetic field. Also, dielectric materials of the same shape with Ferrite was filled between two Ferrite for improving the performance of the circulator, including impedance matching, bandwidth, quality factor, insertion loss. To obtain optimum shape of the Ferrite and dielectric material, we used CST MWS. Simulation result of the circulator is that 1.02 : 1 VSWR, -40dB isolation, 0.2dB insertion loss and measurement result is that 1.03 : 1, -38dB, 1.2dB at 9.385[GHz]. We can get good agreement at isolation and VSWR, but insertion loss was 1 dB great than simulation result.