• 제목/요약/키워드: 2-stage Heat Exchanger

검색결과 49건 처리시간 0.029초

수치해법을 이용한 2단 열교환기 장착 가정용 보일러 연소실의 연소 및 열전달 특성 해석 (Numerical Analysis of Combustion and Heat Transfer of Domestic Gas Boiler Equipped with 2-stage Heat Exchanger)

  • 강승규;최경석;권정락
    • 한국가스학회지
    • /
    • 제14권5호
    • /
    • pp.1-6
    • /
    • 2010
  • 본 연구는 가정용 보일러의 연소실 전산유동해석을 통해 연소실 내부의 온도분포 및 유동형태를 해석하였다. 전산해석을 통해 연소실의 열교환기 구조변화에 따른 효율향상 및 배기가스 발생 특성을 예측하였다. 2단 열교환기 장착시 연소실 내부의 온도를 하강시킴으로서 연소가스의 고온영역 체류시간 감소로 Thermal NOx의 생성이 억제되어 NOx의 발생량이 감소할 것으로 예측되었다. 효율면에서는 2단 열교환기 장착 시 1단 열교환기에 비해 약 24%의 효율이 상승하였다. 반면에 2단 열교환기 장착 시 약 10%의 압력손실이 증가하는 것으로 확인되었다.

소형 가스엔진 발전기의 배기가스 폐열을 이용한 바이오가스 개질 가능성에 관한 실험적 연구 (An Experimental Study on the Possibility of Biogas Reforming using the Waste Heat of a Small-Sized Gas Engine Generator)

  • 차효석;김태수;엄태준;정충수;전광민;송순호
    • 한국수소및신에너지학회논문집
    • /
    • 제23권3호
    • /
    • pp.236-242
    • /
    • 2012
  • This study has been carried out the experiment for the possibility of biogas reforming using waste heat. The source of this waste heat is the exhaust gas from a small-sized gas engine generator. For recovering the waste heat, Two-stage heat exchanger is manufactured. The two-stage heat exchanger is composed of a heat exchanger for the exhaust gas and a heat exchanger for the water. This two-stage heat exchanger is used for reforming the biogas by means of on-site hydrogen production at the small-sized gas engine generator. The two-stage heat exchanger is coupled with the biogas reformer which is a kind of catalytic reformer. To confirm a heat recovery efficiency of the two-stage heat exchanger, temperature differences of inlet and outlet locations are measured. Also, the variations of syngas concentrations with various biogas flow rates are investigated. As a result using manufactured two-stage heat exchanger, the biogas can be reformed from waste heat recovery. This experiment suggests that the exhaust gas heat exchanger is available for reforming the biogas.

법랑코팅 열교환기에서 고온 소성공정에 따른 열전달 및 열응력에 관한 연구 (Numerical Study of Heat Transfer Characteristics and Thermal Stress for Enamel coating Heat Exchanger in High Temperature Firing Process)

  • 최훈기;임윤승;이종욱
    • 융합정보논문지
    • /
    • 제10권2호
    • /
    • pp.82-88
    • /
    • 2020
  • 본 연구는 화공용 열교환기에서 법랑코팅 적용을 위한 고온의 소성 공정조건 최적화에 대한 기초자료를 얻고자 하는데 그 목적이 있다. Shell & Tube 형태인 열교환기에 법랑코팅 적용을 위해 소성온도를 순차적으로 높이는 방안에 대해 검토하였다. 소성로 내부에서 열교환기의 온도분포에 대해 CFD 상용 프로그램으로 수치계산하여 구한 온도를 하중조건으로 열응력 해석을 수행하는 연성 해석(FSI) 방식을 이용하여 열교환기의 구조 안전성에 미치는 영향을 확인하였다. 수치해석 및 실험결과 상온의 열교환기를 바로 860℃도의 소성로에 넣으면 열교환기의 국부적 온도차로 인한 구조 안전성에 문제가 발생하므로 온도차를 줄이기 위한 예열 과정이 필요하다. 소성공정 단계가 적은 Case2와 같이 1단계 예열온도 445℃, 2단계 소성온도 860℃가 가장 적합한 것으로 판단된다.

인자 분석을 통한 전기차 열교환기 분리판용 고강도 알루미늄 판재 성형 연구 (A Study on the Forming Process of High-strength Aluminum Sheet for Electric Vehicle Heat Exchanger Separator Through Parametric Analysis)

  • 정선호;양종훈;김용배;이광진;김봉환;이종섭;배기현
    • 소성∙가공
    • /
    • 제31권2호
    • /
    • pp.57-63
    • /
    • 2022
  • The current study performed formability analysis of a heat exchanger separator for an electric vehicle to apply a high-strength aluminum sheet based on parametric analysis. Mechanical properties for sheet metal forming simulation were evaluated by tensile test, bulge test, and Nakajima test. Two-stage crash forming was established by considering the mass production process using conventional low-strength aluminum sheets. In this study, FEM for the two-stage forming process was conducted to optimize the corner radius and height for improving the formability. In addition, the possibility of a one-stage forming process application was confirmed through FEM. The prototype of the sample was manufactured as FEM results to validate the parametric analysis. Finally, this result can provide a one-stage forming process design method using the high-strength aluminum sheet for weight reduction of a heat exchanger separator for an electric vehicle.

착상시 설계인자에 따른 핀-관 열교환기의 성능변화에 관한 실험적 연구 (An Experimental Study on the Effects of Design Factors for the Performance of Fin-Tube Heat Exchanger Under Frosting Conditions)

  • 이관수
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2657-2666
    • /
    • 1995
  • In this study, the effects of design factors of finned-tube heat exchanger, such as fin spacing and fin array on the frost growth and heat exchanger performance are investigated under a frosting condition. The results show that the amount of frost, frost density and blockage ratio of air flow passage increase with decreasing fin spacing. Heat transfer rate increases momentarily at the initial stage of frosting and then decreases. After that heat transfer rate continues to increase again to reach a maximum value and then decreases dramatically. It is shown that the time required for heat transfer rate to reach a maximum value becomes shorter with decreasing fin spacing, and after a maximum value, heat transfer rate decreases very fast. The maximum allowable blockage ratio is introduced to determine the operation limit of a finned-tube heat exchanger operating under frosting condition and is obtained as a function of fin spacing. It is also shown that heat transfer rate of heat exchanger with staggered fin array increases about 17% and the amount of pressure drop of air increases about 1~2 mmH$_{2}$O, compared with those of in-line type heat exchanger under frosting condition.

직접 접촉식 4단 유동층 열교환기의 압력손실 및 열전달 특성 (The Pressure Drop and Heat Transfer Characteristics of a Direct Contact 4-Stage Fluidized Bed Heat Exchanger)

  • 임동렬;박상일;전광민
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.325-335
    • /
    • 1992
  • In this work, direct contact 4-stage fluidized bed heat exchanger is experimentally studied to develop a new type of heat exchanger which recovers the energy contained in the high temperature waste gas exhausted from the industrial furnaces. A sand is used as a heat transfer medium in this experiment. To determine the optimum operating condition, 11 different perforated plates which have a different free area ratio with different hole diameter are used in the experiment. From the room temperature experiment, the pressure drop which is caused by fluidized bed formation is observed. The high temperature experiment is carried out to seek the optimum operating condition of high heat efficiency at low heat exchanger operation cost. The results of experiment are as following. The pressure drop in the high temperature condition can be predicted from the results of the room temperature experiment. And Nusselt number becomes smaller due to the increased interference between sand particles as Reynolds number increases when the dilute phase fluidized beds are formed in nigh temperature condition. But heat transfer amount through the total sand surface area become larger due to the large resident amount of sand. Considering the heat transfer amount and the heat exchanger operation cost, perforated plates which have either a 30% or 35% of free area ratio with 15mm of hole diameter are best fitted for our goal of this work. The values of .phi. which is a dimensionless number representing the absorption heat amount per unit sand rate are in the range from 0.4 to 0.5, when Reynolds number of waste gas ranges from 25-30 with these perforated plates.

급탕 2단열교환방식 지역난방 열사용시설의 급탕부하 분배에 관한 연구 (Distribution of Hot Tap Water Load for District Heating Substation with Hot Tap Water 2-Stage Heat Exchanger)

  • 정동화;김주완;백영진;이영수;정대헌
    • 설비공학논문집
    • /
    • 제23권4호
    • /
    • pp.297-302
    • /
    • 2011
  • According to the standards for district heating substation established by Korea District Heating Corporation, water heating supply systems at over 150 Mcal/h capacity must employ the 2-stage heat exchanger that improves the system efficiency by reusing the heat included in the return water of district heating system already used for space heating. In this paper, the operating characteristics of the system in accordance with the load distribution of two heat exchangers for pre-heating and re-heating cold city water are investigated. The results including mass flow rate, return temperature etc. help to manage district heating system economically.

착상조건하에서 평행 평판 열교환기의 열 및 물질전달 (Heat and Mass Transfer of Parallel Plate Heat Exchanger under Frosting Condition)

  • 이관수;이태희;김우승
    • 설비공학논문집
    • /
    • 제6권2호
    • /
    • pp.155-165
    • /
    • 1994
  • In this study, the following factors are investigated from experiments for a vertical parallel plate heat exchanger under the frosting condition ; the growth of frost layer, the characteristics of heat and mass transfer, the change of mass flow rate of the air passing through the heat exchanger, and the pressure drop of the air in the heat exchanger. The amount of heat and mass flux of water vapor transferred from the air stream to the heat exchanger surface is large at the early stage of frosting and then decreases dramatically, and the extent of decreasing rate becomes moderate with time. The frost layer formed near the inlet of the heat exchanger is thicker and denser than that formed near the outlet. It is found that the gradient of the amount of frost along the flow direction increases with time. In the early period of frost formation, the thermal resistance between the air and the cooling plate increases dramatically and then the extent of change decreases with time. Initially the convective thermal resistance is dominant. Then, while the convective thermal resistance decreases with time, the conductive thermal resistance continues to increase with time and finally the conductive thermal resistance becomes dominant.

  • PDF

개방형 지중열교환기 용량 설계 방법에 관한 연구 (Study on the Capacity Design Tool Development for Open-loop Ground Heat Exchanger)

  • 류형규;최승혁;윤희원;김유승
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권2호
    • /
    • pp.9-15
    • /
    • 2017
  • When applying geothermal systems in cities such as seoul where high density development prevails, the selection of geothermal system capable of obtaining a large capacity in the limited grounds is necessary. In this study, an easy-to-use design tool is developed in the form of spreadsheet by applying the calculation theory of existing closed-loop vertical ground heat exchanger that can be used in the early design stage of the open-loop ground heat exchanger. By only using the maximum cooling and heating load, it is possible to calculate optimal design open-loop ground heat exchanger. Further research is needed, we are plan to improve the program considering the heat loss of groundwater flowing in the inner casing, G-Function for Open-Loop, and verification by applying actual projects.

착상 시 공기 유속이 슬릿 핀-관 열교환기 서리층 생성에 미치는 영향에 관한 연구 (Effect of air velocity on frost formation of slit fin-and-tube heat exchanger under frosting condition)

  • 신성홍;조금남;하야세 가쿠
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.252-257
    • /
    • 2007
  • The present study investigated the effect of air velocity on frost formation of slit fin-and-tube heat exchanger under frosting condition. The slit fin-and-tube heat exchanger with outer tube diameter 7.0mm and 1 row was used. Air side pressure drop, photographs of frost distribution, frost accumulation and frost thickness were presented with respect to the frosting time. In the early stage of experiment, the case with air velocity of 1.5m/s showed 403% higher for the air pressure drop than the case with the air velocity of 0.5m/s. As the frost was accumulated, the effect of air velocity on air pressure drop was decreased. In the end stage of test, air pressure drops of two cases were very close and air pressure drop for the air velocity of 0.5m/s was higher than that of 2.0m/s. It was also shown in the photographs of frost distribution, frost accumulation and frost thickness. From frost thickness, fanning friction factor was presented.

  • PDF