• Title/Summary/Keyword: 2-stage DC-DC converter

Search Result 124, Processing Time 0.033 seconds

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

Grid-tied Power Converter for Battery Energy Storage Composed of 2-stage DC-DC Converter

  • Kim, Do-Hyun;Lee, Yoon-Seok;Han, Byung-Moon;Kim, Ju-Yong;Chae, Woo-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1400-1408
    • /
    • 2013
  • This paper proposes a new grid-tied power converter for battery energy storage, which is composed of a 2-stage DC-DC converter and a PWM inverter. The 2-stage DC-DC converter is composed of an LLC resonant converter connected in cascade with a 2-quadrant hybrid-switching chopper. The LLC resonant converter operates in constant duty ratio, while the 2-quadrant hybrid-switching chopper operates in variable duty ratio for voltage regulation. The operation of proposed system was verified through computer simulations. Based on computer simulations, a hardware prototype was built and tested to confirm the technical feasibility of proposed system. The proposed system could have relatively higher efficiency and smaller size than the existing system.

A Study on DC-Link Current Ripple of Multi-Phase/Multi-Stage Boost Converter (다상/다단 부스트 컨버터의 DC-Link 리플 전류 분석)

  • Seung-Min Kim;Dong-Hee Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.59-67
    • /
    • 2023
  • This paper explores the variation of DC-Link current ripple analysis in terms of duty cycle and phase angle of Multi-phase/Multi-stage boost converter. A 2-Stage/1-Stage boost converter DC-Link current is used to determine the difference between the 1st stage diode current and the 2nd stage inductor current. Each stage boost converter diode and inductor current is subordinate to the phase angle and duty cycle. The magnitude of the ripple current is variable according to phase angle and duty cycle. The analysis results are verified by variation of DC-Link current ripple using a 1kW typical 2-stage/1-stage boost converter.

Grid-tied Power Conditioning System for Battery Energy Storage Composed of 2-stage DC-DC converter (2단 DC-DC 컨버터로 구성된 배터리 에너지저장용 계통연계형 전력변환장치)

  • Park, Ah-Ryeon;Kim, Do-Hyun;Kim, Kyeong-Tae;Han, Byung-Moon;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1848-1856
    • /
    • 2012
  • This paper proposes a new grid-tied power conditioning system for battery energy storage, which is composed of a 2-stage DC-DC converter and a PWM inverter. The 2-stage DC-DC converter is composed of an LLC resonant converter connected in cascade with a 2-quadrant hybrid-switching chopper. The LLC resonant converter operates in constant duty ratio, while the 2-quadrant hybrid-switching chopper operates in variable duty ratio for voltage regulation. The operation of proposed system was verified through theoretical analysis and computer simulations. Based on computer simulations, a hardware prototype was built and tested to confirm the technical feasibility of proposed system. The proposed system could have relatively higher efficiency and smaller size than the existing system.

Power Loss Analysis of EV Fast Charger with Wide Charging Voltage Range for High Efficiency Operation (넓은 충전 범위를 갖는 전기 자동차용 급속 충전기의 고효율 운전을 위한 손실 분석)

  • Kim, Dae Joong;Park, Jin-Hyuk;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1055-1063
    • /
    • 2014
  • Power losses of a 1-stage DC-DC converter and 2-stage DC-DC converter are compared in this paper. A phase-shift full-bridge DC-DC converter is considered as 1-stage topology. This topology has disadvantages in the stress of rectifier diodes because of the resonance between the leakage inductor of the transformer and the junction capacitor of the rectifier diode. 2-stage topology is composed of an LLC resonant full-bridge DC-DC converter and buck converter. The LLC resonant full-bridge DC-DC converter does not need an RC snubber circuit of the rectifier diode. However, there is the drawback that the switching loss of the buck converter is large due to the hard switching operation. To reduce the switching loss of the buck converter, SiC MOSFET is used. This paper analyzes and compares power losses of two topologies considering temperature condition. The validity of the power loss analysis and calculation is verified by a PSIM simulation model.

Two Stage DC/DC Converter for Photovoltaic Generation (태양광 발전용 2단 구성 DC/DC 컨버터)

  • Yoon, Kwang-Ho;Phum, Sopheak;Kim, Eun-Soo;Won, Jong-Seob;Oh, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.618-626
    • /
    • 2011
  • Solar cell is one of the most important new renewable energy for future energy generation. This paper presents a novel two stage DC/DC converter topology for PV PCSs. The proposed converter consists of an interleaved boost converter and a two-tank LLC resonant converter which is connected in parallel in primary and series in secondary. The main idea of this topology is that the system can achieve either unilateral or bilateral operations due to the input voltage level of the PV module, which leads to a better performance. The operating schemes on the proposed converter are analyzed and described. A 2.2kW prototype product is built, tested and verified.

New Single Stage PFC Full Bridge AC/DC Converter (새로운 방식의 PFC Single Stage Full Bridge AC/DC Converter)

  • 임창섭;권순걸
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.70-75
    • /
    • 2002
  • This paper proposes new single stage power factor correction (PFC) full bridge converter. The proposed converter is combined previous ZVS full bridge DC/DC converter with two inductors, two diodes, two magnetic coupling transformer for PFC. This process of power is isolated from the source and also regulate stable DC output voltage in a category. In this topology, the voltage stress of main switches is reduced by zero voltage switching. Moreover, the proposed converter doesn't need active PFC switch and auxiliarly circuits, like control and gating board, so it could decrease the size and cost and increase the efficiency.

  • PDF

2-stage 3-phase PWM AC/DC Converter for Unity Power Factor Drive of Synchronous Generator (단위역률동작을 위한 동기 발전기 여자 시스템용 2단 3상 PWM AC/DC 컨버터)

  • Lee, Sang-Hun;Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.187-192
    • /
    • 2007
  • The terminal voltage of a synchronous generator is maintained by the field current control of excitation system Generally AC/DC converter which is component of AVR(Automatic Voltage Regulator) system for excitation current control is connected to diode rectifier and DC/DC converter system In the case of diode rectifier system of phase controlled converter, AC/DC converter has low power factor and some low order harmonics in the line current. In this paper, two-stage three-phase PWM AC/DC converter is studied to solve these problems, The proposed method is verified by the computer simulations and experimental results in prototype generation system.

  • PDF

Optimal Efficiency Operation of 2-Stage Boost Converter With Weighted Efficiency (가중효율을 적용한 2-Stage Boost 컨버터 최적효율 운전 연구)

  • Kim, Seung-Min;Kim, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.285-293
    • /
    • 2021
  • An optimal operation method based on weighted efficiency for a two-stage boost converter is proposed in this study. Detailed loss analysis of the converter is performed to derive the optimal operation method according to the load and input voltage fluctuations, and the optimal DC-bus voltage is derived by applying the weighted efficiency method. The proposed method can satisfy optimal efficiency in the main operation region without a complicated control method. Using 1kW typical two-stage boost converter and is verified three types of weighted efficiency formulas and loss analysis are utilized to derive high-efficiency optimal DC-bus voltage from each load range.

Design of the Two-Stage DC-DC Converter for 1kW Fuel Cell Power Generation System (1kW급 연료전지 발전용 2단 구성 방식의 DC-DC 컨버터 설계)

  • Yoo, Ho-Won;Jung, Yong-Min;Lim, Seung-Beom;Lee, Jun-Young;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.206-208
    • /
    • 2008
  • In this paper, the two-stage DC-DC converter is proposed to make the control simple and to boost the low input voltage in the fuel cell generating system. The low efficiency of the conventional power converter is caused by a characteristic of the low-voltage and high-current in the fuel cell generating system. High-frequency transformer is needed to block the noise and to guarantee the safety of cell and load as a magnetically insulation. The proposed two-stage DC-DC converter for a fuel cell generation is more efficient than the traditional one-stage converter and easy to control. The design of a high-frequency transformer is also simple. Finally, the utility of the proposed converter is proved by the simulations and experiments.

  • PDF