• 제목/요약/키워드: 2-phase interleaved boost converter

검색결과 17건 처리시간 0.031초

2상 인터리브드 부스트 PFC의 전류 리플 해석 (Analysis of Current Ripple for Two-Phase Interleaved Boost PFC)

  • 김정훈;전태현
    • 전기학회논문지P
    • /
    • 제61권3호
    • /
    • pp.122-128
    • /
    • 2012
  • An interleaved boost converter has many advantages such as current ripple reduction, switching effective double, etc. Due to these advantages, the interleaved boost converter applies to the power factor correction circuit. However, there are almost no analysis results because the input voltage and current are time-varying system in the power factor correction application. Therefore, in this paper, the current ripples of the power factor correction circuit using single-phase boost dc-dc converter and 2-phase interleaved boost dc-dc converter are compared and analyzed in detail. In order to verify the validity, computer simulation and experimental are performed.

부스트 컨버터의 2상 2중화에 관한 연구 (A Study on the Two Phase with interleaved Boost Converter)

  • 신철준;한경희;손영익;정유석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.139-141
    • /
    • 2008
  • In this paper, the authors study the boost converter as a DC-DC converter like a Power supply and describe the investigation result about the two phase with interleaved boost converter which has the same effect that the switching frequency of the solid-state-switch is two times. As a result, the ripple of the input current and output current is better improved.

  • PDF

Power Loss Analysis of Interleaved Soft Switching Boost Converter for Single-Phase PV-PCS

  • Kim, Jae-Hyung;Jung, Yong-Chae;Lee, Su-Won;Lee, Tae-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.335-341
    • /
    • 2010
  • In this paper, an interleaved soft switching boost converter for a Photovoltaic Power Conditioning System (PV-PCS) with high efficiency is proposed. In order to raise the efficiency of the proposed converter, a 2-phase interleaved boost converter integrated with soft switching cells is used. All of the switching devices in the proposed converter achieve zero current switching (ZCS) or zero voltage switching (ZVS). Thus, the proposed circuit has a high efficiency characteristic due to low switching losses. To analyze the power losses of the proposed converter, two experimental sets have been built. One consists of normal devices (MOSFETs, Fast Recovery (FR) diodes) and the other consists of advanced power devices (CoolMOSs, SiC-Schottky Barrier Diodes (SBDs)). To verify the validity of the proposed topology, theoretical analysis and experimental results are presented.

Coupled Inductor Design Method for 2-Phase Interleaved Boost Converters

  • Liang, Dong;Shin, Hwi-Beom
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.344-352
    • /
    • 2019
  • To achieve high efficiency and reliability, multiphase interleaved converters with coupled inductors have been widely applied. In this paper, a coupled inductor design method for 2-phase interleaved boost converters is presented. A new area product equation is derived to select the proper core size. The wire size, number of turns and air gap length are also determined by using the proposed coupled inductor design method. Finally, the validity of the proposed coupled inductor design method is confirmed by simulation and experimental results obtained from a design example.

결합 인덕터를 이용한 2상 양방향 비반전 벅-부스트 컨버터 (2-Phase Bidirectional Non-Inverting Buck-Boost Converter using Coupled Inductor)

  • 채준영;정승용;차헌녕;김흥근
    • 전력전자학회논문지
    • /
    • 제19권6호
    • /
    • pp.481-487
    • /
    • 2014
  • This study proposes a two-phase non-inverting buck-boost converter that uses a coupled inductor. The multi-phase converter has many advantages over single-phase counterparts, such as reduced output current ripple and conduction loss in switching devices and passive elements. Although the output current ripple of the multi-phase converter is reduced significantly because of the interleaved effect, the inductor current ripple is not reduced in multi-phase converters. One of the solutions to this problem is to use a coupled inductor. A 4 kW prototype converter is built and tested to verify the performance of the proposed converter.

임계 전류모드에서의 다상 교호 승압컨버터의 특성 연구 (A Study on the Characteristics of Multi-Phase Interleaved Boost Converter Operating in Boundary Conduction Mode)

  • 이재삼;배철수;손호인;문석조;허동영
    • 전력전자학회논문지
    • /
    • 제13권4호
    • /
    • pp.257-262
    • /
    • 2008
  • 본 논문에서는 임계 인덕터 전류모드로 동작하는 다상 교호 승압컨버터의 평균 상태방정식을 유도하고, 정상상태 해석 및 소 신호 제어특성을 고찰한다. 또한, 유도된 수식 이론을 근거로, 800W급 2상 교호 승압컨버터를 제작하고, 60인치용 PDP 파워모듈의 PFC 블록에 적용함으로서, 제안된 방식의 실효성을 검증한다.

다상 교호 승압컨버터의 전류평형제어기를 이용한 전류모드제어기 구현 (Implementation of Current Mode Control using Current Balance Controller of Multi-Phase Interleaved Boost Converter)

  • 박종규;최현칠;신휘범
    • 조명전기설비학회논문지
    • /
    • 제22권12호
    • /
    • pp.157-163
    • /
    • 2008
  • 다상 교호 컨버터에서 인덕턴스가 불일치 할 때 첨두전류 제어기를 사용하는 경우에 각 상의 평균 전류는 동일하지 않다. 본 논문에서는 각 상의 인덕턴스가 불일치한 경우에 첨두전류 모드에서 평균전류가 동일해지는 전류분배 제어기를 제안한다 제어기는 과도상태에서도 전류의 평형이 잘 이루어질 수 있도록 설계한다. 제안된 방법을 2상과 4상 교호 승압컨버터에 적용시켰으며, 실험 결과를 통해 인덕턴스가 불일치한 경우에도 첨두전류 모드에서 전류평형이 잘 이루어짐을 보인다.

인터리빙 동작을 위한 하단 인덕터를 갖는 3-Level Boost Converter (3-Level Boost Converter Having Lower Inductor for Interleaving Operation)

  • 이강문;백승우;김학원;조관열;강정원
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.96-105
    • /
    • 2021
  • Large-scale power converters consist of series or parallel module combinations. In these modular converter systems, the interleaving technique can be applied to improve capacitor reliability by reducing the ripple of the I/O current in which each module operates as a phase difference. However, when applying the interleaving technique for conventional three-level boost converters, the short-circuit period of the converter can be an obstacle. Such problem is caused by the absence of a low-level inductor of the conventional three-level boost converter. To solve this problem, a three-level boost converter with a low-level inductor is proposed and analyzed to enable interleaved operation. In the proposed circuit, the current ripple of the output capacitor depends on the neutral point connections between the modules. In this study, the ripple current is analyzed by the neutral point connections of the three-level boost converter that has a low-level inductor, and the effectiveness of the proposed circuit is proven by simulation and experiment.

전류게인 전향보상기법을 이용한 부스트 컨버터의 불연속전도 모드 전류제어 (Discontinuous Conduction Mode Current Control using a Current Gain Feedforward Compensation for Boost Converter)

  • 이승구;김영록;차한주
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2049-2055
    • /
    • 2011
  • In this paper a new current control method is proposed for the discontinuous conduction mode of boost converter. The proposed method using a current gain feedforward compensation adjusts a measured inductor current value and then, calculated an average current precisely in the discontinuous conduction mode as well as continuous conduction mode. By applying the proposed method, the current measurement error is significantly reduced to 2% regardless of the operating points. The proposed method is analyzed and its performance is investigated in simulation. To verify the feasibility of the proposed scheme, a 10kW 3-phase interleaved boost converter was built and experimental results are matched to the simulation results.

A Novel Interleaving Control Scheme for Boost Converters Operating in Critical Conduction Mode

  • Yang, Xu;Ying, Yanping;Chen, Wenjie
    • Journal of Power Electronics
    • /
    • 제10권2호
    • /
    • pp.132-137
    • /
    • 2010
  • Interleaving techniques are widely used to reduce input/output ripples and to increase the power capacity of boost converters operating in critical conduction mode. Two types of phase-shift control schemes are studied in this paper, the turn-on time shifting method and the turn-off time shifting method. It is found that although the turn-off time shifting method exhibits better performance, it suffers from sub-harmonic oscillations at high input voltages. To solve this problem, an intensive quantitative analysis of the sub-harmonic oscillation phenomenon is made in this paper. Based upon that, a novel modified turn off time shifting control scheme for interleaved boost converters operating in critical conduction mode is proposed. An important advantage of this scheme is that both the master phase and the slave phase can operate stably in critical conduction mode without any oscillations in the full input voltage range. This method is implemented with a FPGA based digital PWM control platform, and tests were carried out on a two-phase interleaved boost PFC converter prototype. Experimental results demonstrated the feasibility and performance of the proposed phase-shift control scheme.