• 제목/요약/키워드: 2-inner product

검색결과 185건 처리시간 0.02초

ON GRAMS DETERMINANT IN 2-INNER PRODUCT SPACES

  • Cho, Y.J.;Matic, M.;Pecaric, J.
    • 대한수학회지
    • /
    • 제38권6호
    • /
    • pp.1125-1156
    • /
    • 2001
  • An analogue of Grams inequality for 2-inner product spaces is given. Further, a number of inequalities involving Grams determinant are stated and proved in terms of 2-inner products.

  • PDF

FUZZY SEMI-INNER-PRODUCT SPACE

  • Cho, Eui-Whan;Kim, Young-Key;Shin, Chae-Seob
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제2권2호
    • /
    • pp.163-172
    • /
    • 1995
  • G.Lumer [8] introduced the concept of semi-product space. H.M.El-Hamouly [7] introduced the concept of fuzzy inner product spaces. In this paper, we defined fuzzy semi-inner-product space and investigated some properties of fuzzy semi product space.

  • PDF

CHARACTERIZATIONS OF AN INNER PRODUCT SPACE BY GRAPHS

  • Lin, C.S.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제16권4호
    • /
    • pp.359-367
    • /
    • 2009
  • The graph of the parallelogram law is well known, which gives rise to the characterization of an inner product space among normed linear spaces [6]. In this paper we will sketch graphs of its deformations according to our previous paper [7, Theorem 3.1 and 3.2]; each one of which characterizes an inner product space among normed linear spaces. Consequently, the graphs of some classical characterizations of an inner product space follow easily.

  • PDF

ON 2-INNER PRODUCT SPACES AND REPRODUCING PROPERTY

  • Sababe, Saeed Hashemi
    • Korean Journal of Mathematics
    • /
    • 제28권4호
    • /
    • pp.973-984
    • /
    • 2020
  • This paper is devoted to study the reproducing property on 2-inner product Hilbert spaces. We focus on a new structure to produce reproducing kernel Hilbert and Banach spaces. According to multi variable computing, this structures play the key role in probability, mathematical finance and machine learning.

MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE

  • KAMARAJ K.;SIVAKUMAR K. C.
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.297-310
    • /
    • 2005
  • The concept of the Moore-Penrose inverse in an indefinite inner product space is introduced. Extensions of some of the formulae in the Euclidean space to an indefinite inner product space are studied. In particular range-hermitianness is completely characterized. Equivalence of a weighted generalized inverse and the Moore-Penrose inverse is proved. Finally, methods of computing the Moore-Penrose inverse are presented.

FIXED POINT THEOREMS IN b-MENGER INNER PRODUCT SPACES

  • Rachid Oubrahim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.487-499
    • /
    • 2024
  • The main motivation for this paper is to investigate the fixed point property for nonlinear contraction defined on b-Menger inner product spaces. First, we introduce a b-Menger inner product spaces, then the topological structure is discussed and the probabilistic Pythagorean theorem is given and established. Also we prove the existence and uniqueness of fixed point in these spaces. This result generalizes and improves many previously known results.

On Bessel's and Grüss Inequalities for Orthonormal Families in 2-Inner Product Spaces and Applications

  • Dragomir, Sever Silverstru;Cho, Yeol-Je;Kim, Seong-Sik;Kim, Young-Ho
    • Kyungpook Mathematical Journal
    • /
    • 제48권2호
    • /
    • pp.207-222
    • /
    • 2008
  • A new counterpart of Bessel's inequality for orthonormal families in real or complex 2-inner product spaces is obtained. Applications for some Gr$\"{u}$ss inequality for determinantal integral inequalities are also provided.

'기하와 벡터' 교육과정의 벡터와 내적 개념 분석 (An Analysis of the Vector and Inner Product Concepts in Geometry and Vector Curriculum)

  • 신보미
    • 한국학교수학회논문집
    • /
    • 제16권4호
    • /
    • pp.841-862
    • /
    • 2013
  • 이 연구는 2007 개정 교육과정의 '기하와 벡터' 교과에서 다루어지는 벡터와 내적 개념을 분석하여 그 특징을 기술함으로써 벡터와 내적 개념 지도의 교수학적 시사점을 얻는데 목적을 두었다. 이를 위해 '기하와 벡터' 교육과정에서 다루어지는 벡터와 내적 개념 분석을 위한 세부 관점을 Tall(2002a; Tall, 2004b)과 Watson et al.(2003; Watson, 2002)에 기초하여 5가지로 추출하고, 이렇게 추출된 세부 관점을 토대로 '기하와 벡터' 교육과정 및 교육과정해설서, '기하와 벡터' 교과서 10종 모두에서 다루어지는 벡터와 내적 개념의 특징을 분석하였다. 이로부터 벡터와 내적 개념 형성과 관련된 교육과정상의 이슈를 구체화하였으며 이에 비추어 '기하와 벡터' 교과서에서 벡터 단원의 내용을 전개하는 방식과 관련된 시사점을 논의하였다.

  • PDF