• Title/Summary/Keyword: 2-dimensional visualization

Search Result 328, Processing Time 0.029 seconds

Use of Minimal Spanning Trees on Self-Organizing Maps (자기조직도에서 최소생성나무의 활용)

  • Jang, Yoo-Jin;Huh, Myung-Hoe;Park, Mi-Ra
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.415-424
    • /
    • 2009
  • As one of the unsupervised learning neural network methods, self-organizing maps(SOM) are applied to various fields. It reduces the dimension of multidimensional data by representing observations on the low dimensional manifold. On the other hand, the minimal spanning tree(MST) of a graph that achieves the most economic subset of edges connecting all components by a single open loop. In this study, we apply the MST technique to SOM with subnodes. We propose SOM's with embedded MST and a distance measure for optimum choice of the size and shape of the map. We demonstrate the method with Fisher's Iris data and a real gene expression data. Simulated data sets are also analyzed to check the validity of the proposed method.

Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

  • Moshari, Shahab;Nikseresht, Amir Hossein;Mehryar, Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.219-235
    • /
    • 2014
  • With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

Test Research Using an IR Thermography Technique in a Supersonic Wind Tunnel (초음속 풍동에서의 IR Thermography 기법을 활용한 시험연구)

  • Kim, Ikhyun;Lee, Jaeho;Park, Gisu;Byun, Yunghwan;Lee, Jongkook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.99-107
    • /
    • 2016
  • Test research on Infra-Red Thermography(IRT) technique in a supersonic wind tunnel has been conducted. Inadvertent technical difficulties and their solutions associated with the technique in running of the facility were examined. Two flow conditions at Mach number of 3 and 4 were considered. A double compression ramp model, that replicates realistic high-speed vehicle configuration, was used as test model. The present IR data were compared with shadowgraph visualization images and laminar computational fluid dynamics(CFD) results. It has been shown that the IRT technique can be used in quantifying various fluid dynamic features such as flow transition, separation and three-dimensional phenomena around the double compression ramp model.

Three Dimensional Vortex Behavior of LEX Delta Wing by Dynamic Stereo PIV (Dynamic Stereo PIV에 의한 델타형 날개에서의 3차원 와류 유동에 관한 연구)

  • Lee Hyun;Kim Mi-Young;Choi Jang-Woon;Choi Min-Seon;Lee Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.39-42
    • /
    • 2003
  • Leading edge extension(LEX) in a highly swept shape applied to a delta wing features the modern air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present 3-D stereo PIV includes the Identification of 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterion and so on. A delta wing model with or without LEX was immersed in a circulating water channel. Two high-resolution, high-speed digital cameras$(1280pixel\times1024pixel)$ were used to allow the time-resolved animation work. The present dynamic stereo PIV represents the complicated vortex behavior, especially, in terms of time-dependent characteristics of the vortices at given measuring sections. Quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing to make the easy understanding of the LEX effect or vortex emerging and collapse which are important phenomena occurring in the field of delta wing aerodynamics.

  • PDF

Comparison of Virtual Avatars by Using Automatic and Manual Method

  • Lim, Ho-Sun;Istook, Cynthia L.
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.12
    • /
    • pp.1968-1979
    • /
    • 2010
  • New technology that includes 3D body scanning, digital virtual human, and digital virtual garments has had a significant impact on the current apparel industry. Virtual simulation technology enables the visualization of a 3D virtual garment on a virtual avatar so that consumers can try on garments with their virtual avatars before purchasing. However, the manual virtual avatar provided for online apparel shopping currently has revealed limitations on the different body sizes and shapes of customers. This study analyzes the process of designing the automatic virtual avatar and the manual virtual avatar using OptiTex software; in addition, the study compares the practicality of the automatic virtual avatar with that of the manual virtual avatar. Data was examined by evaluating how much each virtual avatar is similar to the real body and how well it matched the needs of the current apparel industry. In the study, Avatar 1 was automatically created from three-dimensional body scan data and Avatar 2 was manually created from body measurements. The virtual avatar images laid over a real body image and the results were evaluated by comparing the simulated sizes of virtual avatars with those of a real body. Consequently, Avatar 1 was evaluated as more similar to the real body than Avatar 2 in all five body shapes. This study illustrates that an automatic virtual avatar might solve the fit problem that is the most common reason for a high return rate for online shopping. The results show that future virtual simulation technology needs to be improved for the practicality of the virtual avatars.

A semi-automated method for integrating textural and material data into as-built BIM using TIS

  • Zabin, Asem;Khalil, Baha;Ali, Tarig;Abdalla, Jamal A.;Elaksher, Ahmed
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.127-146
    • /
    • 2020
  • Building Information Modeling (BIM) is increasingly used throughout the facility's life cycle for various applications, such as design, construction, facility management, and maintenance. For existing buildings, the geometry of as-built BIM is often constructed using dense, three dimensional (3D) point clouds data obtained with laser scanners. Traditionally, as-built BIM systems do not contain the material and textural information of the buildings' elements. This paper presents a semi-automatic method for generation of material and texture rich as-built BIM. The method captures and integrates material and textural information of building elements into as-built BIM using thermal infrared sensing (TIS). The proposed method uses TIS to capture thermal images of the interior walls of an existing building. These images are then processed to extract the interior walls using a segmentation algorithm. The digital numbers in the resulted images are then transformed into radiance values that represent the emitted thermal infrared radiation. Machine learning techniques are then applied to build a correlation between the radiance values and the material type in each image. The radiance values were used to extract textural information from the images. The extracted textural and material information are then robustly integrated into the as-built BIM providing the data needed for the assessment of building conditions in general including energy efficiency, among others.

Numerical Study on the Side-Wind Aerodynamic Forces of Chambered 3-D Thin-Plate Rigid-Body Model (캠버가 있는 3차원 박판 강체 모형의 측풍 공기력에 대한 수치 연구)

  • Shin, Jong-Hyeon;Chang, Se-Myong;Moon, Byung-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.97-108
    • /
    • 2015
  • In the design of sailing yachts, para-glider, or high-sky wind power, etc., the analysis of side-wind aerodynamic forces exerted on a cambered 3-D model is very important to predict the performance of various machinery systems. To understand the essential flow physics around the three-dimensional shape, simplified rigid-body models are proposed in this study. Four parameters such as free stream velocity, angle of attack, aspect ratio, and camber are considered as the independent variables. Lift and drag coefficients are computed with CFD technique using ANSYS-CFX, and the results with the visualization of post-processed flow fields are analyzed in the viewpoint of fluid dynamics.

An experimental study on the flow characteristics of a supersonic turbine with the cascade positions (익렬 위치에 따른 초음속 터빈의 유동 특성에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.265-271
    • /
    • 2007
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. Experiments were performed to find the flow characteristics of a supersonic turbine with the cascade positions and to find a factor of the expansion loss. The supersonic cascade with a 2-dimensional supersonic nozzle was tested with the cascade positions. The flow was visualized by a Z-type Schlieren system. The static pressures at the turbine cascade inlet and outlet were measured by pressure transducers and a pressure scanner. Also, The total pressures at the turbine cascade back flow were measured. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions of the supersonic turbine were observed. And the flow characteristics in the supersonic turbine with the cascade positions were observed.

  • PDF

Extrapolation of Hepatic Concentrations of Industrial Chemicals Using Pharmacokinetic Models to Predict Hepatotoxicity

  • Yamazaki, Hiroshi;Kamiya, Yusuke
    • Toxicological Research
    • /
    • v.35 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • In this review, we describe the absorption rates (Caco-2 cell permeability) and hepatic/plasma pharmacokinetics of 53 diverse chemicals estimated by modeling virtual oral administration in rats. To ensure that a broad range of chemical structures is present among the selected substances, the properties described by 196 chemical descriptors in a chemoinformatics tool were calculated for 50,000 randomly selected molecules in the original chemical space. To allow visualization, the resulting chemical space was projected onto a two-dimensional plane using generative topographic mapping. The calculated absorbance rates of the chemicals based on cell permeability studies were found to be inversely correlated to the no-observed-effect levels for hepatoxicity after oral administration, as obtained from the Hazard Evaluation Support System Integrated Platform in Japan (r = -0.88, p < 0.01, n = 27). The maximum plasma concentrations and the areas under the concentration-time curves (AUC) of a varied selection of chemicals were estimated using two different methods: simple one-compartment models (i.e., high-throughput toxicokinetic models) and simplified physiologically based pharmacokinetic (PBPK) modeling consisting of chemical receptor (gut), metabolizing (liver), and central (main) compartments. The results obtained from the two methods were consistent. Although the maximum concentrations and AUC values of the 53 chemicals roughly correlated in the liver and plasma, inconsistencies were apparent between empirically measured concentrations and the PBPK-modeled levels. The lowest-observed-effect levels and the virtual hepatic AUC values obtained using PBPK models were inversely correlated (r = -0.78, p < 0.05, n = 7). The present simplified PBPK models could estimate the relationships between hepatic/plasma concentrations and oral doses of general chemicals using both forward and reverse dosimetry. These methods are therefore valuable for estimating hepatotoxicity.

Realistic and Fast Depth-of-Field Rendering in Direct Volume Rendering (직접 볼륨 렌더링에서 사실적인 고속 피사계 심도 렌더링)

  • Kang, Jiseon;Lee, Jeongjin;Shin, Yeong-Gil;Kim, Bohyoung
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.75-83
    • /
    • 2019
  • Direct volume rendering is a widely used method for visualizing three-dimensional volume data such as medical images. This paper proposes a method for applying depth-of-field effects to volume ray-casting to enable more realistic depth-of-filed rendering in direct volume rendering. The proposed method exploits a camera model based on the human perceptual model and can obtain realistic images with a limited number of rays using jittered lens sampling. It also enables interactive exploration of volume data by on-the-fly calculating depth-of-field in the GPU pipeline without preprocessing. In the experiment with various data including medical images, we demonstrated that depth-of-field images with better depth perception were generated 2.6 to 4 times faster than the conventional method.