• Title/Summary/Keyword: 2-dimensional measurement

Search Result 921, Processing Time 0.024 seconds

Characterization of three-dimensional ultrasonic anemometer using phase measurement (위상측정방식을 이용한 3차원 초음파 풍향풍속계의 특성분석)

  • Park, Do-Hyun;Yeh, Yun-Hae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.442-448
    • /
    • 2006
  • Ultrasonic anemometers using pulse envelope detection-based method are standard instruments in most meteorological studies. In this paper, a new phase measurement method is tried to achieve the enhanced resolution without changing dimensions. The measurement sensitivity, dynamic range, and measurement speed of the new instrument are 0.2 mm/s, 13.3 m/s, and 13 measurements/sec, respectively. A graphic user interface is added to show the velocity and direction of the wind with the speed of sound and temperature of the wind in the 3 dimensional space. The new anemometer could be useful for the measurement of the air speed, the flow of fluids, and even air flow inside the downtown buildings.

Measurement of 2 Dimensional Magnetic Property of Grain-oriented Electrical Steel Sheet According to Exciting Field Direction using SST with 2 Axes Excitation (이방향 여자형 SST를 이용한 이방성 전기강판의 인가자계 방향에 따른 2차원 자계특성 측정)

  • Hwan, Eum-Young;Kim, Hong-Jung;Hong, Sun-Ki;Shin, Pan-Seok;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.250-257
    • /
    • 2006
  • It is well known that Grain-oriented electrical steel sheets have two dimensional magnetic properties according to the direction of exciting field such as non-linear phase difference between magnetic flux density and magnetic field intensity vectors, different iron loss and permeability even when an alternating magnetic field is applied. The measurement and application of the two dimensional magnetic properties of the Grain-oriented electrical steel sheets, therefore, are very important for the design and precise performance analysis of electric machines made of them. As the direction of exciting field changes, in this paper, the two dimensional magnetic properties of a Grain-oriented electrical steel sheet, i.e., non-linear B-H curves, phase difference between B and H, and iron loss characteristics, are measured using SST(Single Sheet Tester) which has two axes excitation. The measured results are presented in two ways: using $(B,\theta_B)$ method and using hysteresis loops along rolling and transverse directions, respectively.

3-dimensional measurement for the light emitted from plasma display panel

  • Choi, Hoon-Young;Lee, Seung-Gol;Lee, Seok-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.99-100
    • /
    • 2000
  • We measured 3-dimensional images of the light emitted from plasma display panel by using newly proposed scanned point detecting method (SPDM). From the 3-dimensional emission images, we know that as the sustain voltage increases, intensity of light detected without phosphor increases and the position of the maximum intensity moves to the outside from the electrode gap. Also, we know that 2-dimensional simulations under the assumption that neglects the Y axis variation do not agree with 3-dimensional experiment results.

  • PDF

The Analysis of the Lower Part of Dress Forms Using Three-Dimensional Measurement System (3차원 형상 계측에 의한 인대의 하반신 형태 파악)

  • Lee, Myung-Hee;Jung, Hee-Kyeong
    • Korean Journal of Human Ecology
    • /
    • v.14 no.2
    • /
    • pp.303-312
    • /
    • 2005
  • The purpose of this research is to analyze the lower part of dress forms with different sectional rotation-angles ($e.g.\;9^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ}$) using three-dimensional measurement system and to investigate measurement properties for dress making. The dress forms used in this experiment were size 8 and six types: four from Korea and two from Japan. The instrument and tools for three-dimensional measurement was Whole Body 3D scanner (Exyma-WBS2H). The analysis program used in this experiment was Rapid Form 2004 PP1 (INUS technology, Inc, Korea). The measurement of dress forms was done three times with different sectional rotation-angles and its data were analyzed using SPSS WIN 10.0 Package. The following results were obtained: 1. With mean and standard deviation of each measured part, it was found out that the dress forms from two countries were different in size per each part. For example, the Japanese one was relatively large in middle hip and hip, compared to the Korean one. 2. The 3D analysis of the sectional rotation-angles revealed some differences between the two dress forms in sectional length per each part. 3. With cluster analysis results, it was found that there were definite differences among measurements per each part, especially in $30^{\circ}\;and\;45^{\circ}$ sections. 4. The proportion of the dress forms showed significant differences in the curvature between center and side section of the lower parts. In addition, the shapes on the horizontal section map of the four levels (waist, middle hip, hip, and bottom) were analyzed.

  • PDF

A Study on the Sensitivity Compensation of Three-dimensional Acoustic Intensity Probe in the Higher Frequency Range (3차원 음향 인텐시티 프로브의 고주파 영역 감도 보상 연구)

  • Kim, Suk-Jae;Hideo, Suzuki;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.40-50
    • /
    • 1994
  • In this paper, the sensitivity compensation method for three-dimensional acoustic intensity probe in the higher frequency range has been studied. The measurement error in the higher frequency range is generated from the phase mismatch between microphone's signals of the probe. If the wavelength of sound signal measured is less than those of the distance between microphones of the probe, that is, the higher frequency of the sound signal, the bigger measurement error is generated. In this study, we proposed the compensation methods for one-dimensional acoustic intensity probe with two-microphones, and the efficiency of those methods were investigated by numerical calculation of computer. It was most effective method to compensate the phase mismatch between microphone for the acoustic intensity probe was investigated for the sound estimated. and the efficiency of this method in a three-dimensional probe was investigated for the sound wave travelling in the arbitrary direction by numerical calculation of computer. In this result, the efficiency was proved that, for the measurement error of 1dB or less with the three-dimensional probe of 60mm space, the frequency should be less than 1.2kHz without the error compensation method, but the frequency increased up to 2.8kHz with the error compensation method.

  • PDF

A Measurement System for Two-Dimensional DC-Biased Magnetic Property

  • Enokizono, Masato;Takahashi, Syuichi;Ikariga, Atsushi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.143-148
    • /
    • 2002
  • Up to now, DC-biased magnetic properties have been measured in one dimension (scalar). However, scalar magnetic properties are insufficient to clarify DC-biased magnetic properties because scalar magnetic properties can only impossibly consider the phase difference between the magnetic flux density B vector and the magnetic field strength H vector. Thus the magnetic field strength H and magnetic flux density B in magnetic materials must be directly measured as a vector quantity (two-dimensional). This paper presents measurement system to clarify the two-dimensional DC-biased magnetic properties.

A study on analysis of the structure of green space by the types of urban residential areas (도시내 주거지 유형별 녹지구조분석에 관한 연구)

  • 송태갑;김은일
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.3
    • /
    • pp.56-65
    • /
    • 1997
  • This research was conducted to suggest some directions for desirable urban green space planning through 1) establishing a new classification system by examining the existing concept, problems and characteristics of green space and 2) defining the essence of green space environment and finding some analytical and evaluative methods through a clear establishment of functions, indicators of green space. In the research, measurements of the amount of green space was accompanied with measurements of green covered space, green volume, and the structure of greenery within the frame of vision. As result, three-dimensional measurement was possible, three-dimensional measurement was possible, which turned out to be more effective than the existing 2-dimensional measuring method. It is found that the ratio of green covered space is to proportional to the ratio of green volume in this study. Therefore in green space planning process it is desirable to consider the ratio of green volume all together.

  • PDF

Three-dimensional Information and Refractive Index Measurement Using a Dual-wavelength Digital Holographic

  • Shin, Sang-Hoon;Yu, Young-Hun
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.173-177
    • /
    • 2009
  • Digital holographic microscopy allows optical path difference measurement. Optical path difference depends on the both refractive index and morphology of sample. We developed a dual-wavelength in-line digital holographic microscope that can measure simultaneously the refractive index and morphology of a sample, providing highly precise three-dimensional information. Here we propose theoretical and experimental methods for dual-wavelength in-line digital holographic microscopy. The measured data were reasonable, although there was data error. By improving the experimental method, we could measure the refractive index more precisely and obtain more accurate three-dimensional information on samples.

The Database Development of 2-D and 3-D Hands Measurement for Improving Fitness of Gloves - Focused on the Classification of Hand Type and Analysis of 3-D Hand Shape - (장갑의 적합성 향상을 위한 손부의 2차원 및 3차원 계측정보 DB구축에 관한 연구 -손의 유형분석 및 3차원 입체형상 분석을 중심으로-)

  • 최혜선;김은경
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.910
    • /
    • pp.1300-1311
    • /
    • 2004
  • The aim of this study was to provide the 2 and 3 dimensional statistics requisite in the sizing system and design of gloves. The 64 2-dimensional static measurements were selected to provide information about hands. Participants in the study were 824 adults, aged between 18 and 64. To summarize the information from the measurement values, a Factor Analysis and a Cluster Analysis among multivariate analyses were performed. 3-D scanner was used for visual results of hand shape of each cluster. The results were as follows. Twenty-two items were used for the factor and cluster analysis in order to classify the adult hand shape. The variable quantities that are explained by a total of 3 factors amounted to under 79.37% of the variable quantities. The definition results of the factors related to the hands are as follows: Factor 1 is the horizontal dimension, the thickness of hand factor; Factor 2 is the height of the crotch; and Factor 3 is the vertical dimension of the hand. The adults' group hand was divided into 2 clusters according to a cluster analysis using factor scores. The characteristics according to hand type were as follows: Cluster 1 referred to high horizontal dimensions and thickness, rather small vertical dimensions and crotch height; and Cluster 2 represented the rather smaller horizontal dimensions and thickness but longer hand length than Type 1. To provide specific shape data of each cluster, 3-D scanner measurement was performed. 3-dimensional data base was developed for each cluster type and visual information was provided.

Analyzing the Influence of Spatial Sampling Rate on Three-dimensional Temperature-field Reconstruction

  • Shenxiang Feng;Xiaojian Hao;Tong Wei;Xiaodong Huang;Pan Pei;Chenyang Xu
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.246-258
    • /
    • 2024
  • In aerospace and energy engineering, the reconstruction of three-dimensional (3D) temperature distributions is crucial. Traditional methods like algebraic iterative reconstruction and filtered back-projection depend on voxel division for resolution. Our algorithm, blending deep learning with computer graphics rendering, converts 2D projections into light rays for uniform sampling, using a fully connected neural network to depict the 3D temperature field. Although effective in capturing internal details, it demands multiple cameras for varied angle projections, increasing cost and computational needs. We assess the impact of camera number on reconstruction accuracy and efficiency, conducting butane-flame simulations with different camera setups (6 to 18 cameras). The results show improved accuracy with more cameras, with 12 cameras achieving optimal computational efficiency (1.263) and low error rates. Verification experiments with 9, 12, and 15 cameras, using thermocouples, confirm that the 12-camera setup as the best, balancing efficiency and accuracy. This offers a feasible, cost-effective solution for real-world applications like engine testing and environmental monitoring, improving accuracy and resource management in temperature measurement.