• Title/Summary/Keyword: 2-dimensional gravity modelling

Search Result 8, Processing Time 0.027 seconds

A study on the crustal structure of the continental margin in the East Sea along the Korea Peninsula using potential data (포텐셜자료를 이용한 한반도 동해 대륙주변부의 지각구조에 관한 연구)

  • Kim, Chang-Hwan;Yoo, Lee-Sun;Park, Chan-Hong;Suk, Dong-Woo
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 2007
  • We investigated the undulation of Moho depth and the crustal structure of the continental margin in the East Sea along the Korea Peninsula from inversion and modelling using potential data and previous seismic results. Free-air gravity anomalies generally reflect topography effect. Bouguer gravity anomalies increase toward the Ulleung Basin, indicating that Moho depth is shallower under the Ulleung Basin. Positive magnetic anomalies exist along the continental margin and decrease toward the Ulleung Basin. In analytic signal, the small anomaly in the Hupo Bank infers that the Hupo Bank is uplifted by igneous intrusion and the strong anomaly on the continental slope denotes existence of SDR(seaward dipping reflectors), which are in accordance with the location of SDR detected in previous seismic studies. The inversion result of Bouguer gravity anomaly and the 2-dimensional gravity modelling indicate that the undulation of Moho depth shallows from the continental shelf toward the Ulleung Basin. This is in good agreement with the Moho depth calculated by the previous seismic velocity model using ocean bottom seismometer(OBS). The 2-dimensional gravity modelling infers magmatic underplating zone under the lower continental crust on the continental margin of the East Sea, indicating the possible rifiting of the continental margin.

  • PDF

Tectonic Link Between NE China, Yellow Sea and Korean Peninsula, Revealed by Interpreting CHAMP-GRACE Satellite Gravity Data and Sea-surface Measured Gravity Data (CHAMP-GRACE 인공위성 데이터와 해상 측정 중력 데이터에 나타난 황해안 지역의 남중국과 북중국판의 대륙 충돌대 위치)

  • Choi, Sung-Chan
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.89-92
    • /
    • 2005
  • For the understanding the locus of the Quinling-Dabie-Sulu continental collision’s boundary and the underground structure of the sedimentray basin in the Yellow Sea, three dimensional density modelling is carrid out by using gravity dataset (Free Air Anomaly), which is measured by Tamhae 2, GIGAM in a period 2000-2002. The measured gravity anomaly in the investigations area is mainly responsed by depth distribution of the sedimentary basin. After comparing the sea-measured gravity data to CHAMP-GRACE satellite gravity data, I suggested that the high density model bodies extend mainly from the southern part of China to the middle-western part of the Korean Peninsula, which might be emplaced along the continental collision’s boundary. The total volume of very low density bodies modified by modelling might be about 20 000 km3.

  • PDF

3D Density Modelling of the Yellow Sea Sedimentary Basin

  • Choi, Sungchan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.283-291
    • /
    • 2004
  • To find out the locus of the Quinling-Dabie-Sulu continental collision’s boundary and to estimate underground structure of the sedimentray basin in the Yellow Sea, three dimensional density modelling is carrid out by using gravity dataset (Free Air Anomaly), which is measured by Tamhae 2, KIGAM in a period between 2000 and 2002. The measured gravity anomaly in the investigations area is mainly responsed by depth and density differences between the sedimentary basin and the basement. The high density model-bodies extend mainly from the southern part of China to the middle-western part of the Korean Peninsula, which might be emplaced along the continental collision’s boundary. The total volume of the very low density model-bodies might be expected at about 20,000 km3 in the model area.

  • PDF

Tectonic Link between NE China, Yellow Sea and Korean Peninsula, revealed by interpreting CHAMP-GRACE satellite Gravity Data and sea-surface measured gravity data (CHAMP-GRACE 인공위성 데이터와 해상 측정 중력 데이터에 나타난 황해안 지역의 남중국과 북중국판의 대륙 충돌대 위치)

  • Cho, Sung-Chan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.9-14
    • /
    • 2005
  • For the understanding the locus of the Quinling-Dabie-Sulu continental collision's boundary and the underground structure of the sedimentray basin in the Yellow Sea, three dimensional density modelling is carrid out by using gravity dataset (Free Air Anomaly), which is measured by Tamhae 2, KIGAM in a period 2000 - 2002. The measured gravity anomaly in the investigations area is mainly responsed by depth distribution of the sedimentary basin. After comparing the sea-measured gravity data to CHAMP-GRACE satellite gravity data, I suggested that the high density model bodies extend mainly from the southern part of China to the middle-western part of the Korean Peninsula., which might be emplaced along the continental collision's boundary. The total volume of very low density bodies modified by modelling might be about $20000\;km^3$.

  • PDF

Interpretation of Subsurface Structure by 2-D Gravity Modeling Study (중력탐사를 이용한 2차원 Modelling study에 의한 지질구조 해석)

  • Wee, Soo-Meen;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.409-419
    • /
    • 1991
  • A gravity survey was conducted in the western Marquette district, Michigan, to delineate the subsurface structure and the relationship of the Proterozoic Marquette Range Supergroup rocks (Precambrian X) and Archean basement (Precambrian W) where the Republic, Michigan River, and Marquette troughs join. In order to accomplish these purposes, three hundred and forty gravity stations were established in the area of $380km^2$. Positive anomalies are associated with the Precambria X, metasedimentary sequence which has a higer density with respect to the Precambrian W, basement rocks. The dominant positive gravity anomalies follow the axes of the three troughs which are filled with Precambrian X rocks. Subsurface structure was modelled by using the Talwani method. Gravity model studies indicate that the Marquette trough is asymetrically shaped and steeply dipping at the north edge except in the eastern part of the study area. The interpretive results obtained from two dimensional model studies suggest that the basement structure of the study area is relatively flat, and that the troughs were formed contemporaneously.

  • PDF

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

Gravity Field Interpretation and Underground Structure Modelling as a Method of Setting Horizontal and Vertical Zoning of a Active Fault Core (활성단층의 3차원적인 규모를 결정하기 위한 중력장 데이터의 해석 및 지각구조 모델링: 양산단층에서의 예)

  • Choi, Sungchan;Kim, Sung-Wook;Choi, Eun-Kyeong;Lee, Young-Cheol;Ha, Sangmin
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • In order to estimate the vertical and horizontal structural in the Yangsan fault core line (Naengsuri area, Pohang), we carried out gravity field measurements and interpretation procedures such as Euler deconvolution method and curvature analysis in addition to the forward modelling technique (i.e. IGMAS+). We found a prominent gravity difference of more than 1.5 mGal across the fault core. This indicates a distinct density difference between the western and eastern crustal area across the Yangsan fault line. Comparing this gravity field interpretation with other existent geologic and geophysical survey data (e.g. LiDAR, trenching, electric resistivity measurements), It is concluded that (1) the prominent gravity difference is caused by the density difference of about 0.1 g/㎤ between the Bulguksa Granite in the west and the Cretaceous Sandstone in the east side, (2) the fault core is elongated vertically into a depth of about 2,000 meters and extended horizontally 3,000 meters to the NNE direction from Naengsuri area. Our results present that the gravity field method is a very effective tool to estimate a three -dimensional image of the active fault core.

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.10a
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF