• Title/Summary/Keyword: 2-dimensional gel electrophoresis

Search Result 216, Processing Time 0.027 seconds

Quantitative Proteomics Towards Understanding Life and Environment

  • Choi, Jong-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.371-381
    • /
    • 2006
  • New proteomic techniques have been pioneered extensively in recent years, enabling the high-throughput and systematic analyses of cellular proteins in combination with bioinformatic tools. Furthermore, the development of such novel proteomic techniques facilitates the elucidation of the functions of proteins under stress or disease conditions, resulting in the discovery of biomarkers for responses to environmental stimuli. The ultimate objective of proteomics is targeted toward the entire proteome of life, subcellular localization biochemical activities, and the regulation thereof. Comprehensive analysis strategies of proteomics can be classified into three categories: (i) protein separation via 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification via either Edman sequencing or mass spectrometry (MS), and (iii) proteome quantitation. Currently, MS-based proteomics techniques have shifted from qualitative proteome analysis via 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, toward quantitative proteome analysis. In vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes. protein-labeling tagging with isotope-coded affinity tags, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope-labeled amino acids can be in vivo labeled into live culture cells via metabolic incorporation. MS-based proteomics techniques extend to the detection of the phosphopeptide mapping of biologically crucial proteins, which ale associated with post-translational modification. These complementary proteomic techniques contribute to our current understanding of the manner in which life responds to differing environment.

Proteomic Assessment of Dung Beetle, Copris tripartitus Immune Response

  • Suh, Hwa-Jin;Bang, Hea-Son;Kim, Seong-Ryul;Yun, Eun-Young;Park, Kwan-Ho;Kang, Bo-Ram;Kim, Ik-Soo;Jeon, Jae-Pil;Hwang, Jae-Sam
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.17 no.2
    • /
    • pp.217-221
    • /
    • 2008
  • Dung beetle larvae at the $3^{rd}$ instar were injected with lipopolysaccaride and inducible proteins were examined within a pI level of 3-10 and a size level by proteomics, including 1-D SDS PAGE analysis and antibacterial assay. The immune infected larvae extracts provided seven protein bands in one-dimensional electrophoresis and its antibacterial activity also checked. Hemolymph protein from immune infected larvae of the dung beetle were separated by twodimensional gel electrophoresis and compared with those from native larvae. In 2-D gel electrophoresis, we detected 63 immune infected unique and 32 up-regulated proteins, and 36 proteins that were down-regulated or not present in treated gel. Ten protein spots from unique proteins and those presented as different level of abundance in infected and native larvae were specially expressed. These differentially expressed proteins were proposed to be involved in the defense mechanism against microorganism.

Comparative Proteomics Analysis of Colorectal Cancer

  • Wang, Jun-Jiang;Liu, Ying;Zheng, Yang;Lin, Feng;Cai, Guan-Fu;Yao, Xue-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1663-1666
    • /
    • 2012
  • Background and Objective: Protein expression in colon and rectal cancer (CRC) and paired normal tissues was examined by two-dimensional gel electrophoresis (2-DE) to identify differentially expressed proteins. Materials and Methods: Five fresh colorectal cancer and paired adjacent normal tissues were obtained and differentially expressed protein spots were determined using PDQuest software, with identification on the basis of MALDI-TOF mass spectra. Results: Compared with normal colorectal mucosa, protein abnormal expression of 65 spots varying more than 1.5 times were found in 2-DE gels from colorectal cancer samples (P<0.05); forty-two proteins were up-regulated and 23 were down-regulated; twelve protein spots were identified using mass spectrometry, of which 8 were up-regulated, includimng HSPB1and Annexin A4, while 4 were down-regulated, the results being consistent with Western blot findings. Conclusions: Two-dimensional electrophoresis reference maps for CRC tissues and adjacent normal mucosa (NMC) were established and 12 differentially expressed proteins were identified. Up-regulated HSPB1 and Annexin A4 may play many important roles in the pathogenesis of colorectal cancer.

Study on the variation of cellular physiology of Escherichia coli during high cell density cultivation using 2-dimensional gel electrophoresis

  • Yun, Sang-Seon;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.219-222
    • /
    • 2000
  • Physiological changes of Escherichia coli during the fed-batch fermentation process were characterized in this study. Overall cellular protein samples prepared at the different stage of fermentation were separated by 2-dimensional gel electrophoresis (2-DE), and differently expressed 15 proteins, Phosphotransferase enzyme I, GroEL, Trigger factor, ${\beta}$ subunit of ATP synthase, Transcriptional regulator KDGR, Phosphoglycerate mutase 1, Inorganic pyrophosphatase, Serine Hydroxymethyl-transferase, ${\alpha}$ subunit of RNA polymerase, Elongation factor Tu, Elongation factor Ts, Tyrosine-tRNA ligase, DnaK suppressor protein, Transcriptional elongation factor, 30S ribosomal protein S6 were identified using matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF MS). When bacterial cells grow to high cell density, and IPTG-inducible heterologous protein is produced, expression level of overall cellular proteins was decreased. According to their functions in the cell, identified proteins were classified into three groups, proteins involved in transport process, small-molecule metabolism, and synthesis and modification of macromolecules.

  • PDF

Proteomic Analysis of Circadian Clock Mutant Mice

  • Lee Joon-Woo;Kim Han-Gyu;Bae Kiho
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.493-501
    • /
    • 2005
  • Circadian rhythms, time on a scale of about 24 hours, are present in a number of organisms including animals, plants, and bacteria. The control of the biochemical, physiological and behavioral processes is regulated by endogenous clocks in the suprachiasmatic nucleus (SCN). At the core of this timing mechanism is molecular machinery that are present both in the brain and in the peripheral tissues throughout the body, and even in a single cultured cell. In this study, we performed two-dimensional gel electrophoresis to figure out any correlation between protein expression patterns and the requirement of two canonical clock proteins, either mPER1 or mPER2, by comparing global protein expression profiles in livers from wildtype or mPer1/mPer2 double mutant mice. We could identify several differentially expressed protein candidates with respect to time and genotypes. Further analysis of these candidate proteins in detail in vivo will lead us to the better understanding of how circadian clock functions in mammals.

  • PDF

Identification of Proteins in Human Follicular Fluid by Proteomic Profiling

  • Sim, Young-Jin;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.3
    • /
    • pp.253-259
    • /
    • 2008
  • Human follicular fluid (HFF) is the in vivo microenvironment for oocyte maturation and includes a variety of proteins that could be involved in oocyte development and fertilization. We therefore used a proteomic approach to identify new HFF proteins. HFF from mature human follicles was obtained from five women following oocyte collection for in vitro fertilization (IVF). Ethanol-precipitated HFF run on two-dimensional gel electrophoresis (2DE) produced approximately 250 Coomassie brilliant blue-stained spots, 64 of which were identified using matrix-assisted laser desorption/ionization-mass spectrometry (MALDIMS). In this study, several proteins including complement factor H, inter-${\alpha}$ (globulin) inhibitor H4, inter-${\alpha}$-trypsin inhibitor heavy chain H4 precursor, human zinc-${\alpha}$-2-glycoprotein chain B, PRO2619, PRO02044, and complex-forming glycoprotein HC were new proteins that have not been previously reported in HFF using proteomic methods. Additionally, we identified alloalbumin venezia for the first time from trichloroacetic acid (TCA)-precipitated HFF. These HFF proteins could serve as new biomarkers for important human reproductive processes.

Alterations of Protein Expression in Macrophages in Response to Candida albicans Infection

  • Shin, Yu-Kyong;Kim, Ki-Young;Paik, Young-Ki
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.271-279
    • /
    • 2005
  • Although macrophages are an important first line of cellular defense, they are unable to effectively kill phagocytosed C. albicans. To determine the physiological basis of this inability, we investigated the alterations of macrophage proteins caused by C. albicans infection. Since the formation of C. albicans hyphae caused cell death, proteins were prepared 3 h after infection and examined by two-dimensional gel electrophoresis (2-DE). The most prominent changes were in glycolytic enzymes, which could have caused energy depletion of the infected cells. Also changed were proteins involved in maintenance of cellular integrity and NO production. Treatment of the macrophages with either cytochalasin D or taxol did not alter their inability to kill C. albicans. Our results indicate that multiple factors contribute to cell death as the pathogenic form of C. albicans becomes fully active inside macrophage cells.

Electrophoretical Analysis of 36-Kilodalton Outer Membrane Protein of Vibrio vulnificus ATCC 27562

  • Moon-Soo Heo;Cho-Rok Jung
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.35-39
    • /
    • 1999
  • Elecrophoreticl analysis of a 36 kDa protein was runned by SDS-PAGE, isoelectric focusing (IEF) and two dimensional electrophoresis pattern. Major 36 kDa and 25, 46, 48, 66 kDa protein were detected by Coomassie blue stain on SDS-PAGE. Major 36kDa protein was eluted for production of antiserum for serological analysis, IEF and two dimensional electrophoresis. Isoelectric point of 36kDa was aout pH 8.5. Two dimensional electrophoresis of eluted 36kDa showed one point on the gel. Anti-36 kDa serum made by newzilland rabbit for serological test. In ELISA, final titer of antibody was 100×{TEX}$2^5}${/TEX} : 1. Neutralize ability of serum was examined by slide agglutination test and colonization test in rat. Anti-36 kDa serum agglutinated whole cell of V. vulnificus were inhibited colonization on intestine in rat. Accordingly In this paper contain some electrophoretical analysis and serological test of a 36 kDa OMP of V. vulnificus.

  • PDF

Identification of protease-resistant proteins from allergenic nuts using two-dimensional gel electrophoresis and mass spectrometry

  • Santos, Ilyn L.;Lee, Ju-Young;Youm, Yujin;Lim, Jinkyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.108-112
    • /
    • 2013
  • Nuts are one of the most common sources of allergies in individuals of all ages. In order for a particular protein to render an allergic reaction, it must resist proteolytic digestion by intestinal enzymes. In this study, three well-known allergenic nuts, almonds, cashew nuts, and peanuts, were used as samples, and enzyme digestion with Bacillus protease and porcine pepsin was tested. A proteomic approach using two-dimensional gel electrophoresis and an MS/MS analysis was applied to visualize and identify the proteins that were resistant to enzyme digestion. Among the 150 protein spots tested, 42 proteins were assigned functions. Due to the lack of genomic databases, 41% of the identified proteins were grouped as hypothetical. However, 12% of them were well-known allergens, including AraH. The remainder were grouped as storage, enzymes, and binding proteins.

  • PDF

Antioxidant Effects of Tocotrienol in Rice Bran (미강 함유 Tocotrienol의 항산화 효과)

  • Woo Ki-Min;Lee Young-Sang;Kim Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.4-7
    • /
    • 2005
  • The pharmaceutical function of tocotrienol in rice bran was evaluated. Distinctive antioxidative effects by 1,1-diphenyl-2-picrylhydrazyl(DPPH) could be observed. Also, Superoxide Dismutase(SOD) and Glutathione Peroxidase(GPX) activities of the cultured cells such as human firbroblast and hepatocyte, were increased up to 2 fold by the treatment of tocotrienol. The effects on GPX activity were more evident than SOD activity, and the stimulation was up to 2 fold. The changes of gene expression patterns were examined by applying the cell extracts of fibroblast treated with the increasing concentrations of tocotrienol on two-dimensional gel electrophoresis(2-D gel electrophoresis). As the concentrations increasing, many proteins began to appear with the increasing amounts, while several proteins diminished or disappeared. From these results, tocotrienol was clearly shown to have abilities on protecting any oxidizing damages and stimulating anti-oxidizing activities of the organisms.