• Title/Summary/Keyword: 2-diamine

Search Result 358, Processing Time 0.031 seconds

Synthesis and Characterization of 1,4-Diimine Complexes of 1,2,3,4,5-Pentamethylcyclopentadienylrhodium and iridium

  • Paek, Cheol-Ki;Ko, Jae-Jung;Uhm, Jae-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.980-984
    • /
    • 1994
  • Monomeric rhodium and iridium diimine complexes $Cp^*M(HNRNH)(Cp^*$ = 1,2,3,4,5-pentamethylcyclopentadienyl : (M=lr; R=o-$C_6H_4 (1a), 4,5-(CH_3)_2-C_6H_2-1,2 (1b), 4,5-(Cl)_2-C_6H_2-1,2$ (1c), NCC=CCN-1,2 (1d): M=Rh; R=NCC=CCN-1,2 (1e)) have been synthesized from $[CP^*MCl_2]_2$ and 2 equiv. of diamine in the presence of $NEt_3$. The Crystal structure of 1a was determined by X-ray diffraction method : 1a was crystallized in the monoclinic system, space group $P2_{1/c}$, with lattice constants a=9.543 (1) ${\AA}$, b=16.286 (1) ${\AA}$, c=10.068 (1) ${\AA}$ and ${\beta}$=99.25 (1), with Z= 4. Least-squares refinement of the structure led to R factor of 0.049. The coordination sphere of rhodium and iridium can be described as a 2-legged piano-stool. All complexes are highly colored. Electrochemical studies show that 1d and 1e display quasi-reversible reduction and 1a-1c display irreversible reductions, suggesting that the acceptor orbital might be localized on the diimine ring.

Synthesis and Characterization of Polymer and Polymer Complex with Some Transition Metal Ions (몇 개의 전이금속 이온과 고분자와 고분자 Complex의 합성과 특성연구)

  • Badr, S.K.;Mohamed, T.Y.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • Polyamide derived from azo compound of o-amino phenol coupled with acetyl acetone, maleic anhydride acid and p-phenylene diamine were prepared. The prepared polyamide (PA) was refluxed with metal salts of transition metal ions include, $Co^{+2},\;Cr^{+2},\;Ni^{+2},\;Cu^{+2},\;Zn^{+2},\;Cd^{+2}$ and $Fe^{+3}$ in dimethyl formamide (DMF) in different molar ratios. These complexes were characterized and identified by elemental and thermal analysis, IR, 1H NMR spectra. The data showed that PA ligand coordinates with metal ions in abidentate manner through donating N=N and O-H groups. The metal ions are surrounded by coordinated water molecules and anions to establish the geometrical structure of the complexes. The thermal analysis degradation at different temperatures explained the weight loss of hydrated water and the decompositions of complexes until a constant weight loss of metal oxides is obtained.

Current and Future Trends of Accelerators and Antidegradants for the Tire Industry

  • Hong, Sung-W.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.156-176
    • /
    • 1999
  • Rubber chemicals such as accelerators, antidegradants, vulcanizing agents, processing agents and retarders are very important to the production and protection of tires and rubber goods. The use of accelerators and antidegradants are evaluated in various tire components. This paper will focus on how to vulcanize tires economically and maintain the physical properties of each tire component without severe degradation due to oxygen, heat and ozone. Also, new non-nitrosoamine accelerators and non-staining antiozonants will be discussed. Lastly, the future requirements of antidegradants and accelerators in the tire industry will be reviewed. Tires have been vulcanized with Sulfenamides as primary accelerators and either Guamdine's or Thiurams as secondary accelerators to achieve proper properties at service conditions. However, interior components such as the carcass can be vulcanized with Thiazoles as a primary accelerator to cure faster than the external components. Using the combination of Sulfenamide with secondary accelerators in a tire tread compound and the combination of a Thiazole and Guanidine in a carcass compound will be presented with performance data. Uniroyal Chemical and another Rubber Chemical Manufacturer have developed, "Tetrabenzyl Thiuram Disulfide," (TBzTD) as a non-Nitrosoamine accelerator, which could replace Nitrosoamine generating Thiurams. This new accelerator has been evaluated in a tread compound as a secondary accelerator. Also, Flexsys has developed N-t-butyl-2-benzothiazole Sulfenamide (TBSI) as a non-Nitrosoamine accelerator which could replace 2-(Morpholinothio) -benzothiazole (MBS), a scorch delayed Sulfendamide accelerator. TBSI has been evaluated in a Natural Rubber (NR) belt skim compound vs. MBS. An optimum low rolling resistant cure system has been developed in a NR tread with Dithiomorpholine (DTDM). Also, future requirements for developing accelerators will be discussed such as the replacement of DTDM and other stable crosslink systems. Antidegradants are divided into two different types for use in tire compounds. Internal tire compounds such as apex, carcass, liner, wire breaker, cushion, base tread and bead compounds are protected by antioxidants against degradation from oxygen and heat due to mechanical shear. The external components such as sidewall, chafer and cap tread com-pounds are protected from ozone by antiozonants and waxes. Various kinds of staining and non-staining antioxidants have been evaluated in a tire carcass compound. Also, various para-phenylene diamine antiozonants have been evaluated in a tire sidewall compound to achieve the improved lifetime of the tire. New non-staining antiozonants such as 2, 4, 6-tris-(N-1, 4-dimethylpentyl-p-phenylene diamine) 1, 3, 5 Trizine (D-37) and un-saturated Acetal (AFS) will be discussed in the tire sidewall to achieve better appearance. The future requirements of antidegradants will be presented to improve tire performance such as durability, better appearance and longer lasting tires.

  • PDF

Preparation and Properties of Organic Electroluminescent Devices (유기 전계발광소자의 제작과 특성 연구)

  • 노준서;장호정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • Recently, Organic electroluminescent devices (OELDs) have been demonstrated the medium sized full color display with effective multi-layer thin films. In this study, the multi-layer OELDs were prepared on the patterened ITO (indium tin oxide)/glass substrates by the vacuum thermal evaporation method. The low molecule compounds such as $Alq_3$(trim-(8-hydroxyquinoline)aluminum) and CTM (carrier transfer material) as the electron transport and injection layers as well as TPD (triphenyl-diamine) and CuPc (copper phthalocyanine) as the hole transport and injection layers were used. The luminance was rapidly increased above the threshold voltage of 10 V. The luminance and emission spectrum for the OELDs samples with $A1/CTM/Alq_3$/TPD/1TO structures were found to be 430 cd/$m^2$and 512 nm at 17 V showing green color emission. In contrast, the samples with $Li-A1/Alq_3$/TPD/CuPC/1TO multi-structures showed 508 nm in emission spectrum and 650 cd/$m^2$at 17 V in the luminance. The increment of luminance may be ascribed to the improved efficiency of recombination in the region of the emission layers by the deposition of CuPc as hole injection layer and the low work function of the Li-Al electrode compared to the Al electrode.

  • PDF

Synthesis and characterization of PPG-based urethane-modified epoxy resin for enhancing impact resistance of epoxy composite resin (에폭시 복합수지의 내충격성을 향상을 위한 PPG 기반 우레탄 변성 에폭시 합성 및 특성 분석)

  • Hwang, Chiwon;Jeon, Jaehee;Ahn, Dowon;Yu, Youngchang;Lee, Wonjoo
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.44-52
    • /
    • 2022
  • Epoxy resin has the disadvantage of being easily destroyed by instantaneous impact due to its high crosslinking density despite its high glass transition temperature (Tg) and excellent properties. To compensate for this, in this study, polyol was synthesized by ring opening polymerization of propylene glycol (PPG) diamine, Jeffamine D 2000 and propylene carbonate, and urethane modified epoxy was synthesized using this. The properties of the synthesized urethane modified epoxy were confirmed by FT-IR, H-NMR. To confirm the degree of improvement in impact resistance as an adhesive, a urethane modified epoxy adhesive was prepared by mixing a digylcidyl ether bisphenol A (DGEBA) with curing agent and curing accelerator. Properties test of urethane modified epoxy were shear strength, tensile strength and impact strength. As a result, excellent results were obtained in all test when the ratio of DGEBA : urethane modified epoxy was 8:2.

Luminance Characteristics of a Novel Red-Light-Emitting Device Based on Znq2 and Dye

  • Cho, min-Jeong;Park, Wan-Ji;Lee, Jeong-Gu;Lim, In-Su;Lim, Kee-Joe;Kim, Hyun-Hoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.16-19
    • /
    • 2002
  • In this study, a novel red emitting organic electroluminescent (EL) device was fabricated with the bis(8-oxyquinolino)zinc II (Znq2) doped dye as an emitting layer. The Znq2 was synthesized successfully from zinc chloride (ZnC1$_2$) as an initial material. Then, we fabricated the red organic EL device with a dye (DCJTB) doped and inserted Znq2 between emission layer and cathode for increasing EL efficiency. The hole transporting layer is a N,N'-diphenyl-N,N'-bis-(3-methylphenyl)-1,1'-diphenyl-4,4-diamine (TPD), and the host material of emission layer is Znq2. And the electrical and luminance characteristics of the device were measured. We found that the EL device with Znq2 inserting layer results in the increasing luminance efficiency.

Characteristic of organic electroluminescent devices with 8-hydroxyquinoline Zinc($Znq_2$) as green-emitting material (녹색 발광 재료인 8-hydroxyquinoline Zinc($Znq_2$)를 이용한 유기 발광소자의 특성)

  • 박수길;정승준;정평진;정은실;류부형;박대희;이성구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.193-196
    • /
    • 1999
  • Organic electroluminescent devices have attracted a great deal of attention due to thier potential application to full-color flat-panel displays. The 8-hydroxyquinollne Zinc(Znq$_2$) were synthesized successfully from zinc chloride(ZnCl$_2$) and zinc acetate(Zn(C$_2$H$_3$O$_3$)$_2$) as green omitting material. A double-layer ELD consist of an emitting layer of B-hydroxyquinoline Zinc(Znq$_2$) and a hole-transport layer of tai-phenylene diamine(TPD) derivatives sandwiched between an Aluminium(Al) and Indium-Tin-Oxide(ITO) electrodes omitted green light resulting from Znq$_2$. The electroluminescent devices (ELD) exhibited a maximum luminance of 1000cd/$\textrm{cm}^2$ at a driving voltage of 8V and a driving current density of 0.4mA/$\textrm{cm}^2$.

  • PDF

Effects of Doping in Organic Electroluminescent Devices Doped with a Fluorescent Dye

  • Kang, Gi-Wook;Ahn, Young-Joo;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.1-5
    • /
    • 2001
  • The effect of doping on the energy transfer and charge carrier trapping processes has been studied in organic light-emitting diodes (OLEDs) doped with a fluorescent laser dye. The devices consisted of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenyl-4,4'-diamine (TPD) as a hole transporting layer, tris(8-hydroxyquinoline) aluminum ($Alq_3$) as the host, and a fluorescent dye, 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1 H,5H-benzo[i,j]quinolizin-8-yl) vinyl]-4H-pyran) (DCM2) as the dopant. Temperature dependence of the current-voltage-luminescence (I-V-L) characteristics, the electroluminescence (EL) and photoluminescence (PL) spectra are studied in the temperature ranging between 15 K and 300 K. The emission from DCM2 was seen to be much stronger compared with the emission from $Alq_3$, indicative of efficient energy transfer from $Alq_3$ to DCM2. In addition, the EL emission from DCM2 increasd with increasing temperature while the emission from the host $Alq_3$ decreased. The result indicates that direct charge carrier trapping becomes efficient with increasing temperature. The EL emission from DCM2 shows a slightly sublinear dependence on the current density, implying the enhanced quenching of excitons at high current densities due to the exciton-exciton annihilation.

  • PDF

Preparation and Curing Studies of Maleimide Bisphenol-A Based Epoxy Resins

  • Nanjunda Gowda, Shivananda Kammasandra;Mahendra, Kadidal Nagappa
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1542-1548
    • /
    • 2006
  • Maleimide modified epoxy compounds were prepared by reacting N-(4-hydroxyphenyl) maleimide (HPM) with diglycidylether of bisphenol-A. Triphenylphosphine was used as catalyst and methylethylketone as solvent. The resulting compound possessed both the oxirane ring and maleimide group. The curing reaction of the maleimide epoxy compound with amine curing agents such as 1-(2-aminoethyl) piperazine (AEP) and 5-amino-1,3,3-trimethylcyclohexane methylamine isophorone diamine, IPDA) were studied. Incorporation of maleimide groups in the epoxy resin provides cyclic imide structure and high cross-linking density to the cured resins. The cured samples were found to have good thermal stability, chemical resistance (acid/alkali/solvent) and water absorption resistance.

Property of Poly(amic acid) Precursor Solution (Poly(amic acid) 전구체 용액의 성질)

  • Ahn, Young Moo
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.43-48
    • /
    • 1996
  • Condensation type aromatic polyimides were synthesized in DMF solvent by two step low temperature solution polymerization. By employing monomers as p-phenylene 3diamine and 3 kinds of dianhydrides such as pyromellitic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride and trimellitic anhydride chloride, poly(amic acid) precursors were sythesized. These reactions were exothermic and very fast. When synthesized poly(amic acid)s were dissolved in DMF solvent and stood long time, the polymers were hydrolyzed and their degradation reactions were accelerated as the solution concentrations were dilute. Also, when water is added there-to the degradation rates were accelerated 8faster. In addition, in a very dilute solution state, the reduction viscosity is greatly increased to show properties of conventional polyelectrolytes. This also showed properties sensitive to the concentration change as carboxyl groups per unit segment are increased.

  • PDF