• Title/Summary/Keyword: 2-channel sensing

Search Result 234, Processing Time 0.025 seconds

The Comparison of Thermal Infrared Satellite Observation for Plume Assessment of Thermal Discharge (온배수 확산 평가를 위한 열적외선 위성관측 비교)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.4
    • /
    • pp.367-374
    • /
    • 2015
  • To examine the effect of thermal discharge from nuclear power plants, Sea Surface Temperature (SST) is one of the most important variables measured by satellite remote sensing. However, the study was not much comparison of field data and satellite SST from operational Landsat 8 Thermal Infrared Sensor(TIRS) and Landsat 7 ETM+. The Landsat 8 TIRS have 2 spilt Thermal Infrared channels but ETM+ uses one channel for extracting of SST. In spite of that this research carried out that Landsat 7 ETM+ have more profitable for correction of SST than Landsat 8 TIRS. The used 15 Landsat 7 and 8 Thermal Infrared data of path/row 114-36 were processed by SST algorithm of ENVI and IDL. The in-situ SST data from KHOA(Korea Hydrographic and Oceanographic Administration) compared with satellite SST and the accuracy of extracted SST were assessed by each field sites in-situ point data with time series satellite SST.

Optimum Scale Evaluation of Sedment Basin Design by Soil Erosion Estimation at Small Basin (소유역의 토사유실량에 따른 유사저류지 설계적정성 검토)

  • Lee, Sang-Jin;Choi, Hyun;Kwak, Young-Joo;Lee, Bae-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.25-31
    • /
    • 2007
  • The recent frequent heavy rainfall has caused an increased in soil erosion and the soil drain which drained soil has caused decreased in channel radius and environmental problems by turbidity. In this study, the optimum size of the sediment basin was tested with soil erosion estimated from the Universal Soil Loss Equation (USLE) in the basin using by GIS data. The results show that the estimated soil erosion and the designed soil deposit are $72.1\;m^3$ and $85.0\;m^3$ respectively and the size of sediment basin is proper. In this study the water depth was calculated from the Hec-Ras model to test the stability of the bank and to prove submersion of the inside fields from stream overflow.

  • PDF

Design and Fabrication of $8{\times}8$ Foveated CMOS Retina Chip for Edge Detection (물체의 윤곽검출을 위한 $8{\times}8$ 방사형 CMOS 시각칩의 설계 및 제조)

  • Kim, Hyun-Soo;Park, Dae-Sik;Ryu, Byung-Woo;Lee, Soo-Kyung;Lee, Min-Ho;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.91-100
    • /
    • 2001
  • A $8{\times}8$ foveated (log-polar) retina chip for edge detection has been designed and fabricated using CMOS technology. Retina chip performs photo-input sensing, edge extraction and motion detection and we focused edge extraction. The pixel distribution follows the log-polar transform having more resolution in the center than in the periphery and can reduce image information selectively. This kind of structure has been already employed in simple image sensors for normal cameras, but never in edge detection retina chip. A scaling mechanism is needed due to the different pixel size from circumference to circumference. A mechanism for current scaling in this research is channel width scaling of MOS transistor. The designed chip has been fabricated using standard $1.5{\mu}m$ single-poly double-metal CMOS technology.

  • PDF

The Study on the RF Transceiver Applied to Cognitive Radio Method (주파수 공유기법을 적용한 RF 송수신기에 대한 연구)

  • Kim, Ki-Jung;Kim, Jong-Sung;Bae, Moon-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.12
    • /
    • pp.1315-1320
    • /
    • 2015
  • In this paper Communication data link equipment on a high speed-hopping method to use the frequency resources efficiently for the frequency environment is introduced such as sensing techniques, using the same frequency band by using the received two-channel technique and the receive filter bank unit applied to be shared with other equipment such as radar and so on. The real-time measurement and analysis were operated for measurement the frequency environment of the operating band in advance. and primarily equipment to develop is analyzed how the interference effect to the radar minimize the operation of radar equipment. In reverse, to use the same frequency band the methods such as frequency sharing techniques are presented in this paper. Finally, by design of the main items of the RF transceiver NF, transmission output, and a simulation of the IMD, such as whether the key is verified prior to meet specifications.

Estimation of Bathymetry Changes using Hyperspectral Measurements -Focused on Haeundae beach- (초미세분광 측정치를 이용한 해저지형 변화산정 - 해운대를 중심으로 -)

  • Yang, Intae;Jo, Young-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1335-1342
    • /
    • 2014
  • Shallow water depths were estimated using Compact Airborne Spectrographic Imager (CASI)-1500 and mapped to analyze the bottom bathymetry changes due to the rip currents in Haeundae beach, South Korea for the first time. The depths were estimated empirically using the maximum reflectances from 420nm to 597nm wavelength of CASI and 47 in situ water depth measurements, which were compared with ground-truth bathymetry measurements. The comparisons showed that the RMSE was 1.1m with a correlation coefficient of 0.76. In addition, CASI imagery showed remarkably detailed bottom features, especially those resulting from the rip currents within the beach. Two different channels carved by the rip current were analyzed and characterized with respect to the width and slope compared to surrounding regions. While the west side of the channel showed a wide and gentle slope, the east side of the channel showed a narrow and steep slope. The estimated bathymetry map revealed that the uneven offshore bottom features were related to the transport and accumulation of sediments by the rip current, which reaches hundreds of meters offshore. Accordingly, the accumulated sediments were estimated by adding topography changes compared to the depths of the non-rip current regions. The sediments were accumulated in off channels as much as almost twice the amount of annual sand supplements along the Haeundae beach.

Performance of an Efficient Backoff Retransmission Algorithm with a Proactive Jamming Scheme for Realtime transmission in Wireless LAN (재밍 기반의 재전송 방식을 사용한 무선 LAN에서의 효율적인 실시간 트래픽 전송 방안의 성능 분석)

  • Koo Do-Jung;Yoon Chong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2B
    • /
    • pp.98-106
    • /
    • 2006
  • In order to provide a realtime transmission over a wireless LAM, we here present a new jamming based retransmission mechanism. In a legacy wireless LAN system, all stations use the binary exponential backoff algorithm to avoid collisions among frames. It is well known that the backoff algorithm causes more collisions as the numbers of active stations increases. This makes transmission of real time traffic hard. In the proposed scheme, when each station senses collisions, it promptly allows to send a jamming signal during a unique jamming window period which is determined by its own channel access count database(CACDB). This jamming windows is chosen not to be overlapped each other by using of CACDB, and thus channel access of another station is prevented. Hereafter the station gets the ownership of the medium when the wireless medium becomes idle after sending the jamming signal and sensing carrier, and then sends frame in medium. In our proposal, repeating collisions is never happened. We here assume that real time traffic use a frame of fixed length in order to make the time for receiving its ACK frame same. Comparing the proposed jamming-based retransmission scheme with the the 802.11 and 802.11e MAC by simulation. one can find that the proposed scheme have advantages in terms of delay, average backoff time, and average number of collisions per frame. One can find that the proposed scheme might be practically applicable to several applications of realtime traffic transmission in wireless LAN systems.

The Distribution and Geomorphic Changes of Natural Lakes in East Coast Korea (한반도 동해안의 자연호 분포와 지형 환경 변화)

  • Lee, Min-Boo;Kim, Nam-Shin;Lee, Gwang-Ryul
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.4
    • /
    • pp.449-460
    • /
    • 2006
  • This study aims to analyze distribution of natural lakes including lagoonal lake(lagoon) and tributary dammed lake(tributary lake) and calculate the size, morphology in order to interpret time-serial change of lakes using methodology of remote sensing images(1990s), GIS and topographic maps(1920s) in east coast of Korean Peninsular. Analysis results show that in 1990s, there are 57 natural lakes, with the total size of $75.62km^2$ over size $0.01km^2$. marine-origin lagoons are 48 with total size of $64.85km^2$, composing 85% of total natural lake, and the largest lagoon is Beonpo in Raseon City. Tributary lakes have been formed by damming of tributary channels by fluvial sand bars from main stream, located nearby at coastal zone, similar to lagoon sites. Large tributary lake, Jangyeonho, is developed in lava plateau dissection valley of Eorang Gun, Hamnam Province. There are more distributed at Duman River mouth$\sim$Cheongjin City, Heungnam City$\sim$Hodo Peninsular and Anbyeon Gun$\sim$Gangreung City. Geomorphometrically, correlation of size to circumference is very high, but correlation of size to shape irregularity is very low. The direction of lagoonal coast, NW-SE and NE-SW are predominated due to direction of tectonic structure and longshore currents. The length of the river into lake are generally short, maximum under 15km, and lake size is smaller, degree of size decreasing is higher. Geomorphic patterns of the lake location are classified as coast-hill range, coastal plain, coastal plain-channel valley, coastal plain-hill range and channel valley-hill range. During from 1920s to 1990s, change with lake size decreasing is highest at coastal plain-channel valley, next is coastal plain. Causes of the size decreasing are fluvial deposition from upper rivers and human impacts such as reclamation.

  • PDF

GOCI-II Capability of Improving the Accuracy of Ocean Color Products through Fusion with GK-2A/AMI (GK-2A/AMI와 융합을 통한 GOCI-II 해색 산출물 정확도 개선 가능성)

  • Lee, Kyeong-Sang;Ahn, Jae-Hyun;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1295-1305
    • /
    • 2021
  • Satellite-derived ocean color products are required to effectively monitor clear open ocean and coastal water regions for various research fields. For this purpose, accurate correction of atmospheric effect is essential. Currently, the Geostationary Ocean Color Imager (GOCI)-II ground segment uses the reanalysis of meteorological fields such as European Centre for Medium-Range Weather Forecasts (ECMWF) or National Centers for Environmental Prediction (NCEP) to correct gas absorption by water vapor and ozone. In this process, uncertainties may occur due to the low spatiotemporal resolution of the meteorological data. In this study, we develop water vapor absorption correction model for the GK-2 combined GOCI-II atmospheric correction using Advanced Meteorological Imager (AMI) total precipitable water (TPW) information through radiative transfer model simulations. Also, we investigate the impact of the developed model on GOCI products. Overall, the errors with and without water vapor absorption correction in the top-of-atmosphere (TOA) reflectance at 620 nm and 680 nm are only 1.3% and 0.27%, indicating that there is no significant effect by the water vapor absorption model. However, the GK-2A combined water vapor absorption model has the large impacts at the 709 nm channel, as revealing error of 6 to 15% depending on the solar zenith angle and the TPW. We also found more significant impacts of the GK-2 combined water vapor absorption model on Rayleigh-corrected reflectance at all GOCI-II spectral bands. The errors generated from the TOA reflectance is greatly amplified, showing a large error of 1.46~4.98, 7.53~19.53, 0.25~0.64, 14.74~40.5, 8.2~18.56, 5.7~11.9% for from 620 nm to 865 nm, repectively, depending on the SZA. This study emphasizes the water vapor correction model can affect the accuracy and stability of ocean color products, and implies that the accuracy of GOCI-II ocean color products can be improved through fusion with GK-2A/AMI.

Evaluation of Spectral Band Adjustment Factor Applicability for Near Infrared Channel of Sentinel-2A Using Landsat-8 (Landsat-8을 활용한 Sentinel-2A Near Infrared 채널의 Spectral Band Adjustment Factor 적용성 평가)

  • Nayeon Kim;Noh-hun Seong;Daeseong Jung;Suyoung Sim;Jongho Woo;Sungwon Choi;Sungwoo Park;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.363-370
    • /
    • 2023
  • Various earth observation satellites need to provide accurate and high-quality data after launch. To maintain and enhance the quality of satellite data, it is crucial to employ a cross-calibration process that accounts for differences in sensor characteristics, such as the spectral band adjustment factor (SBAF). In this study, we utilized Landsat-8 and Sentinel-2A satellite imagery collected from desert sites in Libya4, Algeria3, and Mauritania2 among pseudo-invariant calibration sites to calculate and apply SBAF, thereby compensating the uncertainties arising from variations in bandwidths. We quantitatively compared the reflectance differences based on the similarity of bandwidths, including Blue, Green, Red, and both the near-infrared (NIR) narrow, and NIR bands of Sentinel-2A. Following the application of SBAF, significant results with reflectance differences of approximately 1% or less were observed for all bands except NIR. In the case of the Sentinel-2A NIR band, it exhibited a significantly larger bandwidth difference compared to the NIR narrow band. However, after applying SBAF, the reflectance difference fell within the acceptable error range (5%) of 1-2%. It indicates that SBAF can be applied even when there is a substantial difference in the bandwidths of the two sensors, particularly in situations where satellite utilization is limited. Therefore, it was determined that SBAF could be applied even when the bandwidth difference between the two sensors is large in a situation where satellite utilization is limited. It is expected to be helpful in research utilizing the quality and continuity of satellite data.

Soil Erosion and river-bed change of the Keum river basin using by GIS and RS (GIS와 RS를 이용한 금강유역 토양침식과 하상변화 연구)

  • Lee, Jin-Young;Kim, Ju-Young;Yang, Dong-Yoon;Nahm, Wook-Hyun;Kim, Jin-Kwan
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2006
  • Flooding hazard caused by natural and artificial environmental changes is closely associated with change in river bed configuration. This study is aimed at explaining a river-bed change related to soil erosion in the Keum river basin using GIS and RS. The USLE was used to compute soil erosion rate on the basis of GIS. River-bed profiles stretching from Kongju to Ippo were measured to construct a 3D-geomorphological map. The river-bed change was also detected by remote sensing images using Landsat TM during the period of 1982 to 2000 for the Keum river. The result shows that USLE indicates a mean soil erosion rate of $1.8\;kg/m^2/year$, and a net increase of a river-bed change at a rate of $+5\;cm/m^2$/year in the Kangkyeong area. The change in river-bed is interpreted to have been caused by soil erosion in the downstream of the Keum river basin. In addition river-bed change mainly occurred on the downstream of the confluence where tributaries and the main channel meet. Other possible river-bed change is caused by a removal of fluvial sand aggregates, which might have resulted in a net decrease of exposed area of sediment distribution between 1991 and 1995, while a construction of underwater structures, including a bridge, a reclamation of sand bars for rice fields and dikes, resulted in an increase of the exposed area of river-bed due to sediment accumulation.

  • PDF