• Title/Summary/Keyword: 2-S emissions

Search Result 746, Processing Time 0.031 seconds

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Complex Terrain and Ecological Heterogeneity (TERRECO): Evaluating Ecosystem Services in Production Versus water Quantity/quality in Mountainous Landscapes (산지복잡지형과 생태적 비균질성: 산지경관의 생산성과 수자원/수질에 관한 생태계 서비스 평가)

  • Kang, Sin-Kyu;Tenhunen, John
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.307-316
    • /
    • 2010
  • Complex terrain refers to irregular surface properties of the earth that influence gradients in climate, lateral transfer of materials, landscape distribution in soils properties, habitat selection of organisms, and via human preferences, the patterning in development of land use. Complex terrain of mountainous areas represents ca. 20% of the Earth's terrestrial surface; and such regions provide fresh water to at least half of humankind. Most major river systems originate in such terrain, and their resources are often associated with socio-economic competition and political disputes. The goals of the TERRECO-IRTG focus on building a bridge between ecosystem understanding in complex terrain and spatial assessments of ecosystem performance with respect to derived ecosystem services. More specifically, a coordinated assessment framework will be developed from landscape to regional scale applications to quantify trade-offs and will be applied to determine how shifts in climate and land use in complex terrain influence naturally derived ecosystem services. Within the scope of TERRECO, the abiotic and biotic studies of water yield and quality, production and biodiversity, soil processing of materials and trace gas emissions in complex terrain are merged. There is a need to quantitatively understand 1) the ecosystem services derived in regions of complex terrain, 2) the process regulation occurred to maintain those services, and 3) the sensitivities defining thresholds critical in stability of these systems. The TERRECO-IRTG is dedicated to joint study of ecosystems in complex terrain from landscape to regional scales. Our objectives are to reveal the spatial patterns in driving variables of essential ecosystem processes involved in ecosystem services of complex terrain region and hence, to evaluate the resulting ecosystem services, and further to provide new tools for understanding and managing such areas.

Biorefinery Based on Weeds and Agricultural Residues (잡초 및 농림부산물을 이용한 Biorefinery 기술개발)

  • Hwang, In-Taek;Hwang, Jin-Soo;Lim, Hee-Kyung;Park, No-Joong
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.340-360
    • /
    • 2010
  • The depletion of fossil fuels, ecological problems associated with $CO_2$ emissions climate change, growing world population, and future energy supplies are forcing the development of alternative resources for energy (heat and electricity), transport fuels and chemicals: the replacement of fossil resources with $CO_2$ neutral biomass. Several options exist to cover energy supplies of the future, including solar, wind, and water power; however, chemical carbon source can get from biomass only. When used in combination with environmental friend production and processing technology, the use of biomass can be seen as a sustainable alternative to conventional chemical feedstocks. The biorefinery concept is analogous to today's petroleum refinery, which produce multiple fuels and chemical products from petroleum. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is the co-production of a spectrum of bio-based products (food, feed, materials, and chemicals) and energy (fuels, power, and heat) from biomass [definition IEA Bioenergy Task 42]. By producing multiple products, a biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstocks. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. Future biorefinery may play a major role in producing chemicals and materials as a bridge between agriculture and chemistry that are traditionally produced from petroleum. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role.

Distribution Characteristics of Environmental Contaminant at Soil in an Industrial Complex Area (공단지역 토양 중 환경오염물질 농도 분포 특성)

  • Jung, Jong-Hyeon;Cho, Sang-Won;Lim, Hyun-Sul
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.200-208
    • /
    • 2012
  • This study was performed to prevent the health damage of environmental contaminants in Industrial Complex Area. And, this study aimed to identify the concentration levels and distribution characteristics of environmental contaminants and Polycyclic Aromatic Hydrocarbons (PAHs) at soil in Industrial Complex Area and control area. The concentration of the soil pollution standard such as the heavy metals in the soil, VOCs, PAHs, and PCB were measured and analyzed using the soil specimens in the Industrial Complex Area and control area. Soil specimens from the Industrial Complex Area (the direct exposure area) and the control area were surveyed. Songdo-dong, Haedo-dong and Jechul-dong, which are in the direct exposure area and near the emission source, showed relatively high concentrations of contaminant materials when compared with Jangki-myeon, which is far off and in the control area. The concentration of zinc was 20.8-58.9% of the level of concern (300 mg/kg) in the 1st region, which is a relatively high concentration. The concentration of fluoride was under the standard in every region, but it was about 74% of the level of concern (400 mg/kg) in the 1st region. It is recommended that controlling fluoride emissions is necessary. Levels of organic phosphate, phenol, and VOCs like benzene, toluene, ethylbenzene and xylene were under the detection limit of the analysis instruments. The concentration of TPH was high in Songdo-dong. The concentration of contaminants in Jechul-dong was high. In addition, it was observed that the level of soil contamination changed depending on the distance from the emission source. The concentration of PAH compounds in the soil was 18.71-1744.59 ng/g, and the concentration of six potential cancer-causing PAH materials was 6.54-695.94 ng/g. The highest concentration was in Songdo-dong. The PAH concentration in the direct exposure area near the complex was relatively high compared to the indirect exposure area.

Influence of Sulfur and Fluorine Compounds on the Growth and Yield of Rice Plants;I. Growth Retardation and Yield Reduction under Various Stressed Conditions in the Field (황화물(黃化物) 및 불화물(弗化物)이 수도생육(水稻生育)과 수량(收量)에 미치는 영향(影響);I. 오염지역(汚染地域)에서의 생육장해(生育障害) 및 수량감소(收量減少))

  • Park, Wan-Cheol;Shin, Eung-Bai;Kim, Kwang-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.2
    • /
    • pp.53-65
    • /
    • 1987
  • The study was performed to investigate the effect of gaseous emissions of sulfur dioxide and hydrogen fluoride on the growth of rice plants under stressed field conditions consisting of 88 industrial plants operating with 285 smoke stacks emitting pollutants. As for the relationship between yields and yield components it is believed that the panicles per hill is the single most important component affecting the rate of yield of the rice plant. Based on the standard partial regression coefficient analysis, panicles per hill has the largest contribution to yield and the average contribution of 54%. Other components such as spikelets per panicle, percent fertility and 1000 grain weight are also contributing factors to yield, although far less so. Fluorine content in the leaf appear to have more negative effect on panicles per hill, percent fertility and subsequent overall yield than does sulfur content in the leaf. It is constantly observed and interesting to note that fluorine and sulfur content in the leaf appears to have no effect on spikelets per panicle and 1000 grain weight. Reduction in yield seems to be affected mainly by panicles per hill which are, in turn, affected more by fluorine content in the leaf as demonstrated by the standard partial coefficient analysis. Regarding the prediction sum of the square of the regression equation, the lowest value was found when nine variables were used for the analysis. The variables taken into consideration were the monthly sulfur and fluorine content in the leaf as well as the monthly percent of leaf damage during the months of June, July and August. A significant correlation is found between the actual and predicted yields by the regression equations selected as a result of a prediction sum of the square analysis.

  • PDF

Experimental Study on Energy Saving through FAN Airflow Control in the Generator Room of a 9200-ton Training Ship (9200톤급 실습선 발전기실 FAN 송풍유량 제어를 통한 선박에너지 절약에 관한 실험적 연구)

  • Moon-seok Choi;Chang-min Lee;Su-jeong Choe;Jae-jung Hur;Jae-Hyuk Choi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.697-703
    • /
    • 2023
  • As a part of the global industrial efforts to reduce environmental pollution owing to air pollution, regulations have been established by the International Maritime Organization (IMO). The IMO has implemented various regulations such as EEXI, EEDI, and CII to reduce air pollution emissions from ships. They are also promoting measures to decrease the power consumption in ships, aiming to conserve energy. Most of the power used in ships is consumed by electric motors. Among the motors installed on ships, the engine room blower that takes up a significant load, operates at a constant irrespective of demand. Therefore, energy savings can be expected through frequency control. In this study, we demonstrated the efficacy of energy savings by controlling the frequency of the electric motor of the generator blower that supplies combustion air to the generator's turbocharger. The system was modeled based on the output data of the turboharger outlet temperature in response to the blower frequency inpu. A PI control system was established to control the frequency with the target being the turbocharger outlet temperature. By maintaining the turbocharger design standard outlet temperature and controlling the blower frequency, we achieved an annual energy saving of 15,552kW in power consumption. The effectiveness of energy savings through frequency control of blower fans was verified during the summer (April to September) and winter (March to October) periods. Based on this, we achieved annual fuel cost savings of 6,091 thousand won and reduction of 8.5 tons of carbon dioxide, 2.4 kg of SOx, and 7.8 kg of NOx air pollutants on the training ship.