• Title/Summary/Keyword: 2-EH

Search Result 338, Processing Time 0.023 seconds

A Study on the Chemical Characteristics of High and Low Productive Paddy Soil (고수확답(高收穫畓)과 저수확답(低收穫畓) 토양(土壤)의 화학적(化學的) 성질(性質) 비교(比較))

  • Oh, W.K.;Park, Y.S.;Chung, D.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 1968
  • A high and low productive paddy soils were waterlogged at $30{\pm}2^{\circ}C$ for 35 days in the laboratory. The relation of pH and Eh changes, ferrous iron and ammonium nitrogen of these soils was studied. The results obtained are summarized as follows: 1. pH value has been increased for 13 days of incubation and after 13 th day, they maintain their pH value without marked change, and pH value of high productive soil is higher than that of low productive soil by 0.25-0.30. 2. Eh value has been decreased for 10 days of incubation and then they also maintain their Eh value without marked change. Eh value of high productive soil is lower than that of low productive soil by 50-70 mv. 3. In both soils ferrous iron formed under submerged condition increased steeply within 4-5 days of incubation and after that they maintain their content without marked change. The $Fe^{+{+}}$ content of high productive soil is higher than low productive soil by 1.0 mg/1 gr soil. 4. $NH_4{^{-N}}$ formed under submerged condition rapidly increased in the early period of incubation and after that decreased to a certain level and maintain their content, but its content of high productive soil is higher than that of low productive soil by $20-25{\gamma}/1\;gr$ at the early stage and lower at the latter period by $10-15{\gamma}/1\;gr$.

  • PDF

The Influence of Some Soil-treated Herbicides on the Mineralization of Nitrogen Fertilizers I. In a flooded paddy soil (토양처리형 제초제가 질소비료의 무기화작용에 미치는 영향 I. 침수토양 조건)

  • Kim Moo Key
    • Korean journal of applied entomology
    • /
    • v.15 no.4 s.29
    • /
    • pp.205-214
    • /
    • 1976
  • Effect of Butachlor(2-chloro-2, 6-diethyl N-(buthoxymethyl) acetanilide), Nitrofen(2,4-dichloro-4-nitrodiphenyl ether), Benthiocarb+Simetryne(s-(4-chlorobenzyl)-N, N-diethylthiocarbamate $7\%$+2-methylthio-4, 6-bis(ethylamino)-s-triazine $1.5\%)$, Propanil (3,4-dichloropropionanilide), and Perfluidone {1. 1. 1-trifluoro-N, N-(2-methyl-4-(phenylsulfonyl) Pheny1) methanesulfon amide} on urea hydrolysis and subsequent nitrification was investigated in a flooded soil incubated at $24\pm1^{\circ}C$ for 9 weeks. 1. Butachlor and Perfluidone at the rate of 1,440 and 1,200g, ai/10a, respectively, slightly inhibited the early stage of urea decomposition, and caused a slight decrease in the production of ammomium, which, however, was recovered readily. 2. Propanil at the rate of 2,800g, ai/10a imhibited the first stage of nitrification, and brought about a slight increase in the ammonium conentration and a decrease in the concentration of nitrite and nitrate. This inhibitive effect was a little more evident at higher concentration of applied nitrogen. The other herbicides caused no inhibition of urea decomposition and subsequent nitrification even at the highest rate of application. 3. pH and Eh of the soil were not significantly affected by the herbicides tested.

  • PDF

Effects of pH-Eh on Natural Attenuation of Soil Contaminated by Arsenic in the Dalchen Mine Area, Ulsan, Korea (비소로 오염된 달천광산 토양의 자연저감 능력에 대한 pH-Eh영향)

  • Park Maeng-Eon;Sung Kyu-Youl;Lee Minhee;Lee Pyeong-Koo;Kim Min-Chul
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.513-523
    • /
    • 2005
  • The contamination of soils and groundwaters in the Dalcheon mine area, Ulsan, is investigated, and a natural attenuation capacity on redox and pH is evaluated. Arsenopyrite, the major source of arsenic pollution in the Dalcheon mine area, is contained up to $2\%$ in tailings. Furthermore, As-bearing minerals such as loellingite, nicolite, rammelsbergite, gersdorffite cobaltite and pyrite are also source of arsenic contamination, which show various concentration of arsenic each other. Surface of pyrite and arsenopyrite in tailings partly oxidized into Fe-arsenates and Fe-oxides, which means a progressive weathering process. There is no relationship between pH and arsenic content in groundwaters, otherwise Eh and arsenic concentration in unsaturated and saturated groundwater shows positive relationship. RMB (Red Mud Bauxite) could be useful as a trigger on natural attenuation due to superior ability of removal capacity of arsenic when contaminated soil and groundwater in the Dalcheon mine area are remediated.

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.

The Effects of Nitrogen Fertilizers and Cultural Patterns on Methane Emission From Rice Paddy Fields (논토양에서 질소비종 및 벼 재배양식이 메탄가스 발생에 미치는 영향)

  • Ko, Jee-Yeon;Kang, Hang-Won;Kang, Ui-Gum;Park, Hang-Mee;Lim, Dong-Kuy;Park, Kyeng-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.227-233
    • /
    • 1998
  • To mitigate the methane emission from rice paddy fields, effects of nitrogen fertilizers source and cultural patterns were evaluated on silty loam soils. And a pot experiment was carried out to find out the effects of nitrogen fertilizers on soil pH, Eh, sulfate concentration of soil water in flooded soil. In transplanting cultivation, the total methane emission depending on fertilizers was $32.9gm^{-2}$ for urea ; $30.3gm^{-2}$ for ammonium sulfate ; $26.4gm^{-2}$ for coated urea. Methane emitted in direct seeding on dry soil was $24.7gm^{-2}$ for urea ; $16.7gm^{-2}$ for ammonium sulfate : and $22.8gm^{-2}$ for coated urea. Thus, the methane emission rate of direct seeding on dry soil was 29.7% lower than transplanting. According to the nitrogen fertilizers, the methane emission rate by ammonium sulfate and coated urea were reduced 18.4 and 15.9% in comparison with urea, respectively. In pot experiments, pH in flooded soils depending on nitrogen fertilizers dereased in order of urea > coated $urea{\fallingdotseq}no$ fertilizer > ammonium sulfate and the order was coincided with that of total $CH_4$ emission from flooded soil. Soil Eh was highest in ammonium sulfate application followed by coated urea, no fertilizer, urea. And sulfate concentrations of soil water were in order of ammonium sulfate > coated urea > urea > no fertilizer.

  • PDF

Effects of Yellow Clay on the Production of Volatile Fatty Acids during the Anaerobic Decomposition of the Red Tide Dinoflagellate Cochlodinium polykrikoides in Marine Sediments (해양퇴적층에서 적조생물(Cochlodinium polykrikoides)의 혐기성 분해과정 중 황토가 휘발성 지방산 생성에 미치는 영향)

  • Park, Young-Tae;Lee, Chang-Kyu;Park, Tae-Gyu;Lee, Yoon;Bae, Heon-Meen
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.5
    • /
    • pp.472-479
    • /
    • 2012
  • The formation of volatile fatty acids(VFAs) and changes in pH, oxidation and reduction potential(Eh) and acid volatile sulfide(AVS) with the addition of yellow clay were investigated using microcosm systems to examine the effects of yellow clay dispersion on the anaerobic decomposition of Cochlodinium polykrikoides in marine sediments. The acetate concentration reached a maximum by day 4 and was 1.2-1.8 fold less in the sample treated with yellow clay compared to the untreated sample (224-270 vs. 333 uM). The formate concentration reached a maximum by day 1 and was 1.3-2.8 fold less in the sample treated with yellow clay compared to the untreated sample (202-439 vs. 563 uM). The propionate concentration reached a maximum by day 2 and was 1.5-1.8 fold less in the sample treated with yellow clay compared to the untreated sample (32.6 vs. 57.2 uM). After the amounts of acetate, formate and propionate peaked the levels dropped dramatically due to the utilization by sulfate reducing bacteria. The Eh of the samples treated with yellow clay was similar to the untreated sample on day 0 but was higher in the sample treated with yellow clay(140-206 mV) from days 4 to 17. AVS started to form on day 3 and this was sustained until day 6, and 1.2-2.2 fold less was produced in the sample treated with yellow clay compared to the untreated sample (40.2-69.3 vs. 83.2-93.8 mg/L). Accordingly, during the anaerobic decomposition of C. polykrikoides in marine sediments, yellow clay dispersal seems to suppress the reduction state of Eh and the formation of volatile fatty acids(acetate, formate and propionate) used as an energy source by sulfate reducing bacteria, indicating that this process controls the production of hydrogen sulfide that negatively affects marine organisms and the marine sediment environment.

Basic research for the reuse of algae by-products using vermicomposting (지렁이 퇴비화에 의한 조류 부산물 재활용 가능성에 대한 기초 연구)

  • Lee, Chang-Ho;Yang, Yong-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.69-76
    • /
    • 2010
  • After feeding mixed samples, VS ranged from 60 to 80% of total costs in 15 days. EC ranged from1.21 to 2.45, 1.25 to 2.1 and 1.2 to 1.88mS/cm when worms were fed with a mixture of by-products of tidal current and sewage sludge, a mixture of by-products of algae producy, and food wastes and a mixture of by-products of algae producy, sewage sludge and food wastes. That means the kinds of mixture don't have any negative impacts on worms survival. With the feed with a mixture of by-products of algae producy and food wastes and a mixture of by-products of algae producy, sewage sludge and food wastes, pH shows stable 5.4 to 6.7, and 6.2 to 7.4 where is suitable for worms. But a mixture of by-products of algae producy and sewage sludge is out of proper scope for raising worms, in other words, extra care will be necessary. In case of Eh, a mixture of by-products of algae producy and sewage sludge make eh negative (-) in early stage so also when feeding worms, also extra care will be needed. NaCl ranged from 0.32 to 0.82% or form 0.23 to 0.61% when a mixture of by-products of algae producy and food wastes and a mixture of by-products of algae producy, sewage sludge and food wastes were fed. So taking care of salts will be essential whenever feeding.

Epi-Leptosphaerin: A New L-Isoascorbic Acid Derivative from Marine Sponges

  • Kulkarni, Roshan R.;Jo, A Reum;Kim, Young Ho;Na, MinKyun
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.293-296
    • /
    • 2015
  • A new L-isoascorbic acid derivative epi-leptosphaerin (1) and two known compounds leptosphaerin (2), and verongamine (3) were isolated from sponges of the orders Verongida and Thorectidae. Compounds 1 and 2 are most likely of sponge-associated fungal origin. In the present study, isolated compounds were investigated for their inhibition of soluble epoxide hydrolase (sEH), which is considered a promising target for the management of pain, inflammation, and comorbidities associated with diabetes. Compound 3, verongamine, displayed weak inhibitory activity against sEH with an $IC_{50}$ value $51.5{\pm}1.0{\mu}M$.

Microbial Leaching of Iron from Shinyemi Magnetite Ore (미생물을 이용한 신예미 자철광으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Suh, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • Microorganisms participate in a variety of geochemical processes such as weathering and formation of minerals, leaching of precious metals from minerals, and cycling of organic matter The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite ore by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial iron leaching experiments were performed using magnetite ore, Shinyemi magnetite ore, in well-defined media with and without bacteria at room temperature for a month. Water soluble Fe and Mn during the leaching experiments were determined by ICP analysis of bioleached samples, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 15 mg/L and Mn = 3.41 mg/L) was lower than that in the anaerobic environments (Fe = 32.8 mg/L and Mn = 5.23 mg/L). The medium pH typically decreased from 8.3 to 7.2 during a month incubation. The Eh of the initial medium decreased from +144.9 mV to -331.7 mV in aerobic environments and from -2.3 mV to -494.6 mV in anaerobic environments upon incubation with the metal reducing microorganisms. The decrease in pH is due to glucose fermentation producing organic acids and $CO_2$. The ability of bacteria to leach soluble iron from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite represents the largest pool of electron acceptor as well as to use as a novel biotechnology for leaching precious and heavy metals from raw materials.

The Effect of Additions of Lime and Starch on the Silica Sorption Characteristics in Submerged Paddy Soil (석탄(石灰) 및 전분첨가(澱粉添加)에 따른 침수(湛水) 토양(土壤)의 규산흡수량(珪酸吸收量) 및 흡착특성(吸着特性) 변화(變化))

  • Yoon, Jung-Hui;Hwang, Ki-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.35-38
    • /
    • 1984
  • A laboratory experiment was carried out to investigate the effects of the additions of lime soluble starch on the behavior of silica in submerged soil. 1. Available silica in the submerged soil was increased as pH come up to neutral condition and Eh decreased. 2. Application of soluble starch accelerating the soil reduction nearly doubled the amount of silica sorbed in soil from silica solution. 3. Silica sorption of soil treated with slaked lime was increased to some extent in the low silica solution but was not showed that constancy in high silica solution. 4. The reaction between amount of silica sorbed in soil and silica concentration in solution followed not Lamgmuir but Freundlich adsorption isotherm.

  • PDF