• Title/Summary/Keyword: 2-Dimensional

Search Result 15,170, Processing Time 0.046 seconds

Hyperparameter Optimization and Data Augmentation of Artificial Neural Networks for Prediction of Ammonia Emission Amount from Field-applied Manure (토양에 살포된 축산 분뇨로부터 암모니아 방출량 예측을 위한 인공신경망의 초매개변수 최적화와 데이터 증식)

  • Pyeong-Gon Jung;Young-Il Lim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.123-141
    • /
    • 2023
  • A sufficient amount of data with quality is needed for training artificial neural networks (ANNs). However, developing ANN models with a small amount of data often appears in engineering fields. This paper presented an ANN model to improve prediction performance of the ammonia emission amount with 83 data. The ammonia emission rate included eleven inputs and two outputs (maximum ammonia loss, Nmax and time to reach half of Nmax, Km). Categorical input variables were transformed into multi-dimensional equal-distance variables, and 13 data were added into 66 training data using a generative adversarial network. Hyperparameters (number of layers, number of neurons, and activation function) of ANN were optimized using Gaussian process. Using 17 test data, the previous ANN model (Lim et al., 2007) showed the mean absolute error (MAE) of Km and Nmax to 0.0668 and 0.1860, respectively. The present ANN outperformed the previous model, reducing MAE by 38% and 56%.

Experimental Study on Autoignition of Superabsorbent Polymers (고흡수성 중합물질의 자연발화에 대한 실험적 연구)

  • Jong-Man Heo;Jae-Wook Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.280-291
    • /
    • 2023
  • Purpose: As fire accidents happen at the production and storage sites of superabsorbent polymers for convenience of daily life, an experimental study was conducted to secure basic data to establish practical preventive measures against them. Method: The sample container (20cm width × 20cm length) was made into a rectangular cuboid with the heights of 3cm, 5cm, 7cm, and 14cm, respectively, to allow access to the infinite flat plane. The front and back of the container were covered with a 300-mesh stainless steel mesh for one-dimensional heat transfer. The sample container was placed in the center of the thermostatic bath, which was heated to a predetermined temperature by setting the thermostat program in advance, and it was determined to be 'ignited' when the central temperature of the sample rose by more than 20℃ above the set temperature, and "unignited" when it was maintained at an approximate value of the set temperature. Result: The critical autoignition temperature was calculated to be 217.5℃ when the height of the sample container was 3 cm, 212.5℃ when it was 5 cm, 202.5℃ when it was 7cm, and 187.5℃ when it was 14cm. The ignition induction time to reach the maximum temperature was 34hours for 3cm, 76hours for 5cm, 143hours for 7cm, and 318hours for 14cm. Conclusion: ① As the size of the container increased, the autoignition temperature decreased and the induction time to reach the maximum temperature increased. ② An apparent activation energy was calculated to be 44.92kcal/mol, with a correlation of 96.93%.

Influence of Pile Driving-Induced Vibration on the Adjacent Slope (파일 항타진동이 인접 비탈면에 미치는 영향)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.27-40
    • /
    • 2023
  • A pile is a structural element that is used to transfer external loads from superstructures and has been widely utilized in construction fields all over the world. The method of installing a pile into the ground should be selected based on geotechnical conditions, location, site status, environmental factors, and construction costs, among others. It can be divided into two types: direct hammering and preboring. The direct hammering method installs a pile into the bearing layer, such as rock, using a few types of hammer, generating a considerable amount of pile driving-induced vibration. The vibration from pile driving influences adjacent structures and the ground; therefore, quantitatively investigating the effects of vibration is inevitably required. In this study, two-dimensional dynamic numerical modeling and analysis are performed using the finite difference method to investigate the influence on the adjacent slope, including temporary supporting system. Time-dependent loading induced by pile driving is estimated and used in the numerical analysis. Consequently, large surface displacement is estimated due to surface waves and less wave deflection, and refraction at the surface. The total displacement decreases with the increase of the distance from the source. However, lateral displacement at the top of the slope shows a larger value than vertical displacement, and the overall displacement tends to be concentrated near the face of the slope.

Digital Twin-based Cadastral Resurvey Performance Sharing Platform Design and Implementation (디지털트윈 기반의 지적재조사 성과공유 플랫폼 설계 및 구현)

  • Kim, IL
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.37-46
    • /
    • 2023
  • As real estate values rise, interest in cadastral resurvey is increasing. Accordingly, a cadastral resurvey project is actively underway for drone operation through securing work efficiency and improving accuracy. The need for utilization and management of cadastral resurvey results (drone images) is being raised, and through this study, a 3D spatial information platform was developed to solve the existing drone image management and utilization limitations and to provide drone image-based 3D cadastral information. It is proposed to build and use. The study area was selected as a district that completed the latest cadastral resurvey project in which the study was organized in February 2023. Afterwards, a web-based 3D platform was applied to the study to solve the user's spatial limitations, and the platform was designed and implemented based on drone images, spatial information, and attribute information. Major functions such as visualization of cadastral resurvey results based on 3D information and comparison of performance between previous cadastral maps and final cadastral maps were implemented. Through the open platform established in this study, anyone can easily utilize the cadastral resurvey results, and it is expected to utilize and share systematic cadastral resurvey results based on 3-dimensional information that reflects the actual business district. In addition, a continuous management plan was proposed by integrating the distributed results into one platform. It is expected that the usability of the 3D platform will be further improved if a platform is established for the whole country in the future and a service linked to the cadastral resurvey administrative system is established.

Development of curriculum for humanity education in Christian university (기독교대학 인성교육을 위한 교과목 개발)

  • Hyang-Sook Park
    • Journal of Christian Education in Korea
    • /
    • v.72
    • /
    • pp.317-339
    • /
    • 2022
  • The purpose of this study is to develop liberal arts subjects for humanity education in Christian universities. Christian universities need to attempt Christian humanity education through Christian educational interpretation of humanity. This study defines the humanity not character or personality but rather humanity. Humanity is starting from an understanding of human conditions. And it is a perspective toward oneself and others based on human ontological questions and life style. Human is a being with developmental crises and are marginal being with existential anxiety. Therefore, humanity education of Christian universities should be a place to face the void of finite humans in order to understand what kind of existence they are and to transform their epistemology to understand self and the world. Christian humanity education will be realized by two approaches. The first is a theoria approach that extends from a two-dimensional understanding of the self and experienced reality to the speculative and introspective pursuit of the ultimate truth, The second is a praxis approach that consist of the interaction of reflection to human's act and reflective behavior. Therefore, this study develops a subject focused on a speculative and reflective understanding of humanity as an case of a liberal arts subject for humanity education in a Christian university, and a subject focusing on the understanding of reflexively participating in the actual social situation, which is the context of humanity.

Simulation of the effect of inclusions length and angle on the failure behavior of concrete structure under 3D compressive test: Experimental test and numerical simulation

  • Mohammad Saeed, Amini;Vahab, Sarfarazi;Kaveh, Asgari;Xiao, Wang;Mojtaba Moheb, Hoori
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2023
  • Man-made structure materials like concrete usually contain inclusions. These inclusions affect the mechanical properties of concrete. In this investigation, the influence of inclusion length and inclination angle on three-dimensional failure mechanism of concrete under uniaxial compression were performed using experimental test and numerical simulation. Approach of acoustic emission were jointly used to analyze the damage and fracture process. Besides, by combining the stress-strain behavior, quantitative determination of the thresholds of crack stress were done. concrete specimens with dimensions of 120 mm × 150 mm × 100 mm were provided. One and two holes filled by gypsum are incorporated in concrete samples. To build the inclusion, firstly cylinder steel tube was pre-inserting into the concrete and removing them after the initial hardening of the specimen. Secondly, the gypsum was poured into the holes. Tensile strengths of concrete and gypsum were 2.45 MPa and 1.5 MPa, respectively. The angle bertween inclusions and axial loadind ary from 0 to 90 with increases of 30. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Diameter of the hole was 20 mm. Entirely 20 various models were examined under uniaxial test. Simultaneous with experimental tests, numerical simulation (Particle flow code in two dimension) were carried out on the numerical models containing the inclusions. The numerical model were calibrated firstly by experimental outputs and then failure behavior of models containing inclusions have been investigated. The angle bertween inclusions and axial loadind vary from 0 to 90 with increases of 15. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Entirely 32 various models were examined under uniaxial test. Loading rate was 0.05 mm/sec. The results indicated that when inclusion has occupied 100% of sample thickness, two tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusion has occupied 75% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusions have occupied 50% and 25% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. Also the inclusion was failed by one tensile crack. The compressive strength of samples decease with the decreases of the inclusions length, and inclusion angle had some effects on that. Failure of concrete is mostly due to the tensile crack. The behavior of crack, was affected by the inclusion length and inclusion number.

A Study of Fatigue Damage Factor Evaluation for Railway Turnout Crossing using Qualitative Analysis & Field Test (현장측정 및 정성분석기법을 이용한 분기기 망간 크로싱의 피로손상도 평가에 관한 연구)

  • Park, Yong-Gul;Choi, Jung-Youl;Eum, Ki-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.881-893
    • /
    • 2008
  • The major objective of this study is to investigate the fatigue damage factor evaluation of immovability crossing for railway turnout by the field test and qualitative analysis. From the field test results of the servicing turnout crossing and qualitative analysis with frictional wear which section stiffness decreased, it was evaluated fatigue life of servicing turnout crossing. Most design practices have not taken advantage of the advanced theories in the modern fracture mechanics and finite element analysis due to complexity of analysis as well as the large quantity of vaguely defined parameters in actual designs. This paper considers fatigue problems in turnout crossing using effective analytical and design tools from the field of qualitative constraint reasoning. A set of software modules was developed for fatigue analysis and evaluation, which is easily applicable in engineering practices of designers. The techniques enable the use complex analysis formulations to tackle practical problems with uncertainties, and present the design outcome in two-dimensional design space solution. Appropriate engineering assumptions and judgments in carrying out these procedures, often the most difficult part for practicing engineers, can be partially produced by using qualitative reasoning to define the trends and ranges, interval constraint analysis to derive the controlling parameters, as well as design space to account for practical experience.

Application of HWAW Method to Detect Underground Anomaly in Shallow Depth (지표 근처 지중 이상체 파악을 위한 HWAW 기법의 적용)

  • Bang, Eun-Seok;Kim, Gyeong-Seob;Son, Jeong-Sul;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1C
    • /
    • pp.11-20
    • /
    • 2009
  • A new alternative method based on HWAW method to detect underground anomaly was introduced. The location of underground anomaly can be estimated by using 2-dimensional image of phase velocity image with position and wavelength based on distortion phenomena of surface wave due to underground anomaly. Overall procedure of proposed method such as field testing, signal processing and interpretation of the result was introduced. Numerical verification study was performed by using various ground models containing underground anomaly. According to the condition of anomaly, the propagation and reflection characteristics of surface wave were different and this could be more easily shown in the image of phase velocity. Some rules of distortion phenomena were found and these become clues for estimating underground anomaly in interpreting real field data. Field verification tests were performed with conventional geophysical methods such as DC resistivity method and GPR. Though field condition is not homogeneous like numerical models, similar distortion phenomena were found in the testing results and estimated location of underground anomaly was agreed well with the results of another geophysical methods.

Production of a New Biosurfactant by a New Yeast Species Isolated from Prunus mume Sieb. et Zucc.

  • Jeong-Seon Kim;Miran Lee;Dae-Won Ki;Soon-Wo Kwon;Young-Joon Ko;Jong-Shik Kim;Bong-Sik Yun;Soo-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1023-1029
    • /
    • 2023
  • Biosurfactants reduce surface and interfacial tension due to their amphiphilic properties and are an eco-friendly alternative for chemical surfactants. In this study, a new yeast strain JAF-11 that produces a biosurfactant was selected using drop collapse method, and the properties of the extracts were investigated. The nucleotide sequences of the strain were compared with closely related strains and identified based on the D1/D2 domain of the large subunit ribosomal DNA (LSU) and internal transcribed spacer (ITS) regions. Neodothiora populina CPC 39399T, the closest species with strain JAF-11, showed a sequence similarity of 97.75% for LSU and 94.27% for ITS, respectively. The result suggests that the strain JAF-11 represents a distinct species that cannot be assigned to any existing genus or species in the family Dothideaceae. Strain JAF-11 produced a biosurfactant reducing the surface tension of water from 72 mN/m to 34.5 mN/m on the sixth day of culture and the result of measuring the critical micelle concentration (CMC) by extracting the crude biosurfactant was found to be 24 mg/l. The molecular weight 502 of the purified biosurfactant was confirmed by measuring the fast atom bombardment mass spectrum. The chemical structure was analyzed by measuring 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMRs of the compound. The molecular formula was C26H46O9, and it was composed of one octanoyl group and two hexanoyl groups to myo-inositol moiety. The new biosurfactant is the first report of a compound produced by a new yeast strain, JAF-11.

Numerical Analysis of Block Type Quay Wall with Piles for Restraining Horizontal Deformation (말뚝 결합 블록식 안벽의 수평변위 억제에 대한 수치해석 연구)

  • Soon-Goo Kwon;Won-Hyo Lee;Tae-Hyung Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.155-163
    • /
    • 2023
  • A two-dimensional numerical analysis was performed on the depth of pile embedment, the magnitude of the residual water level, and the condition of the presence or absence of cap concrete to understand the behavior of the block-type quay wall with piles. The results showed the control effect of the lateral displacement of the quay wall depending on the embedment of the pile. When the piles were not embedded, the lateral displacement of the quay wall increased proportionally as the residual water level difference increased. In contrast, when the piles were embedded into the ground, the control of the lateral displacement of the quay wall was greatly exerted even if the residual water level difference increased. There was little difference in the lateral displacement of the block-type quay wall regardless of the presence or absence of cap concrete. Under the condition where the piles were embedded down to the rubble mound layer, the piles exhibited the rotational behavior seen in the short piles. As the embedment depth of the piles increased, the piles showed the same bending behavior as the intermediate piles. Thus, the piles significantly contribute to the control of lateral displacement in the block-type quay wall with piles.