• Title/Summary/Keyword: 2-D flow analysis model

Search Result 496, Processing Time 0.046 seconds

Conceptual Design of the Scroll Air Compressor for Fuel Cell (연료전지용 스크롤 공기압축기 개념설계)

  • Kwon, Tae-Hun;Ahn, Jong-Min;Kim, Hyun-Jin;Shim, Jae-Hwi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.113-120
    • /
    • 2008
  • Potential application of the scroll type machine to air compressor for fuel cell has been studied. Among the seven configuration factors which determine scroll wrap profile, the wrap thickness and the orbiting radius were chosen as two independent variables to generate various scroll wrap profiles. A conceptual design practice was conducted for scroll air compressor for SOFC with power output of 2 kW. With larger wrap thickness and orbiting radius, base plate area of the orbiting scroll becomes smaller, so is the axial gas force acting on the base plate, resulting in reduced thrust loss in spite of larger friction velocity. Performance analysis on the designed model showed that its total efficiency was 64.4% with the mass flow rate per unit compressor input of 0.00905 kg/(s kW) for the wrap thickness of 3.5 mm and the orbiting radius of 3.0 mm.

Analysis of Spatial Water Quality Variation in Daechung Reservoir (대청호 수리-수질의 공간적 변동 특성 분석)

  • Lee, Heung Soo;Chung, Se Woong;Choi, Jung Kyu;Oh, Dong Geun;Heo, Tae Young
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.699-709
    • /
    • 2011
  • The uses of multi-dimensional hydrodynamic and water quality models are increasing to support a sustainable management of large dam reservoirs in Korea. Any modeling study requires selection of a proper spatial dimension of the model based on the characteristics of spatial variability of concerned simulation variables. For example, a laterally averaged two-dimensional (2D) model, which has been widely used in many large dam reservoirs in Korea, assumes that the lateral variations of hydrodynamic and water quality variables are negligible. However, there has been limited studies to give a justification of the assumption. The objectives of this study were to present the characteristics of spatial variations of water quality variables through intensive field monitoring in Daechung Reservoir, and provide information on a proper spatial dimension for different water quality parameters. The monitoring results showed that the lateral variations of water temperature are marginal, but those of DO, pH, and conductivity could be significant depending on the hydrological conditions and local algal biomass. In particular, the phytoplankton (Chl-a) and nutrient concentrations showed a significant lateral variation at R2 (Daejeongri) during low flow periods in 2008 possibly because of slow lateral mixing of tributary inflow from So-oak Stream and wind driven patchiness.

An Extraction of Detailed Isoconversional Kinetic Scheme of Energetic Materials using Isothermal DSC (등전환법과 등온 DSC를 이용한 고에너지 물질의 정밀 반응모델 개발)

  • Kim, Yoocheon;Park, Jungsu;Kwon, Kuktae;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.46-55
    • /
    • 2016
  • The kinetic analysis of a heavily aluminized cyclotrimethylene-trinitramine(RDX) is conducted using differential scanning calorimetry(DSC), and the Friedman isoconversional method is applied to the DSC experimental data. The pre-exponential factor and activation energy are extracted as a function of the product mass fraction. The extracted kinetic scheme does not assume multiple chemical steps to describe the complex response of energetic materials; instead, a set of multiple Arrhenius factors is constructed based on the local progress of the exothermic reaction. The resulting reaction kinetic scheme is applied to two thermal decomposition tests for validating the reactive flow response of a heavily aluminized RDX. The results support applicability of the present model to practical thermal explosion systems.

A Study on Spatial Pattern of Impact Area of Intersection Using Digital Tachograph Data and Traffic Assignment Model (차량 운행기록정보와 통행배정 모형을 이용한 교차로 영향권의 공간적 패턴에 관한 연구)

  • PARK, Seungjun;HONG, Kiman;KIM, Taegyun;SEO, Hyeon;CHO, Joong Rae;HONG, Young Suk
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.155-168
    • /
    • 2018
  • In this study, we studied the directional pattern of entering the intersection from the intersection upstream link prior to predicting short future (such as 5 or 10 minutes) intersection direction traffic volume on the interrupted flow, and examined the possibility of traffic volume prediction using traffic assignment model. The analysis method of this study is to investigate the similarity of patterns by performing cluster analysis with the ratio of traffic volume by intersection direction divided by 2 hours using taxi DTG (Digital Tachograph) data (1 week). Also, for linking with the result of the traffic assignment model, this study compares the impact area of 5 minutes or 10 minutes from the center of the intersection with the analysis result of taxi DTG data. To do this, we have developed an algorithm to set the impact area of intersection, using the taxi DTG data and traffic assignment model. As a result of the analysis, the intersection entry pattern of the taxi is grouped into 12, and the Cubic Clustering Criterion indicating the confidence level of clustering is 6.92. As a result of correlation analysis with the impact area of the traffic assignment model, the correlation coefficient for the impact area of 5 minutes was analyzed as 0.86, and significant results were obtained. However, it was analyzed that the correlation coefficient is slightly lowered to 0.69 in the impact area of 10 minutes from the center of the intersection, but this was due to insufficient accuracy of O/D (Origin/Destination) travel and network data. In future, if accuracy of traffic network and accuracy of O/D traffic by time are improved, it is expected that it will be able to utilize traffic volume data calculated from traffic assignment model when controlling traffic signals at intersections.

Study on physical habitat suitability of Gobiobotia naktongensis in Naeseong Stream according to change of bed grain size (내성천 하상 입경 변화에 따른 흰수마자의 물리 서식 적합도 분석)

  • Lee, Dong Yeol;Park, Jae Hyun;Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.553-562
    • /
    • 2023
  • The Gobiobotia naktongensis is a species endemic to Korea, and it has recently been designated as a class I endangered species of freshwater fish. Naeseong Stream, one of the tributaries of the Nakdong River, where the Gobiobotia naktongensis was first discovered, provided an optimal habitat for the Gobiobotia naktongensis in the past with fine sand beds and riffle. Currently, due to the construction of Yeongju Dam and the excessive dredging of river channels by the local government, the riverbed armoring in the downstream area of the dam is undergoing rapid changes, and as a result, the habitat environment of the Gobiobotia naktongensis is deteriorating. In this study, the variations of the habitat suitability of the Gobiobotia naktongensis due to the change in the riverbed grain size of the Naeseong Stream were analyzed based on the WUA (weight usable area) using the physical habitat model, River2D. The study domain is the reach from Seoktap Bridge to Hoeryong Bridge downstream of Yeongju Dam. The change in riverbed grain size was analyzed using D50 acquired in 2010 and 2020, respectively. The substrate grain size of Naeseong Stream in 2020 was thicker than that in 2010, and the riverbed coarsening phenomenon was evident overall. As a result of the River2D analysis, the area in which the Gobiobotia naktongensis could inhabit was only about 0.75% in 2010 compared to the entire area of the flow, and even this decreased to 0.55% in 2020 due to riverbed armoring.

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter(II) -Structural Improvement (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(II) -구조개선을 중심으로)

  • Kim, Jin-Uk;Jung, Yu-Jin;Yoo, Jeong-Kun;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.985-992
    • /
    • 2011
  • The 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics and flow distribution for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. Three types of modifications such as i) changing the plenum shape, ii) orifice install in the exit part of cleaned gas, iii) increasing the plenum number were established. From the results of computational fluid dynamics, it was revealed that the changing of plenum shape and orifice install in the exit part of cleaned gas was more reasonable than the increasing the plenum number because of the difficulties of retrofit. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, save the installation area, save the operation fee, and management more convenient.

Numerical Modeling of Soil Liquefaction at Slope Site (사면에서 발생하는 액상화 수치해석)

  • Park, Sungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.133-143
    • /
    • 2006
  • A fully coupled effective stress dynamic analysis procedure for modeling seismic liquefaction on slope is presented. An elasto-plastic formulation is used for the constitutive model UBCSAND in which the yield loci are radial lines of constant stress ratio and the flow rule is non-associated. This is incorporated into the 2D version of Fast Lagrangian Analysis of Continua (FLAC) by modifying the existing Mohr-Coulomb model. This numerical procedure is used to simulate centrifuge test data from the Rensselaer Polytechnic Institute (RPI). UBCSAND is first calibrated to cyclic direct simple shear tests performed on Nevada sand. Both pre- and post-liquefaction behaviour is captured. The centrifuge test is then modeled and the predicted accelerations, excess porewater pressures, and displacements are compared with the measurements. The results are shown to be in general agreement. The procedure is currently being used in the design of liquefaction remediation measures for a number of dam, bridge, tunnel, and pipeline projects in Western Canada.

  • PDF

A Case Study on Kakao's Resilience: Based on Five Levers of Resilience Theory

  • Song, Minzheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.44-58
    • /
    • 2017
  • The purpose of this study is to prove the Korean Internet company, Kakao's resilience capacity. For it, this paper reviews the previous literatures regarding Kakao's business models and discusses 'resilience' theory. Then, it organizes the research questions based on the theoretical background and explains the research methodology. It investigates the case of Kakao's business and organization. The case analysis shows that five levers of resilience are a good indicator for a successful platform business evolution. The five levers are composed of coordination, cooperation, clout, capability, and connection: First lever, coordination that makes the company to restructure its silo governance in order to respond to actual business flow starting from the basic asset like game and music content; second lever, cooperation where the firm provides creative people with playground for startups such as KakaoPage; third lever, clout where the company shares its data by opening its API of AI and chatbot to $3^{rd}$ party developers; fourth lever, capability where the firm establishes AI R&D center, KakaoBrain as the function of multi-domain generalist for developing diverse platforms tackling customer needs; and the last fifth lever, connection where the firm continues to expand its platform business to the peripheries, O2O businesses such as KakaoTaxi, KakaoOrder, KakaoPay, and KakaoBank. In conclusion, this study proposes Internet companies to be a resilient platform utilizing those five levers of resilience in order to form successful platform. This study contributes to the agile innovation of Internet platform with ecological sense.

A Numerical Study on the Ground Effect of a Circular Cylinder in the Presence of a Moving Wall (이동벽면에 의한 원형 실린더의 지면효과에 관한 전산연구)

  • Jung, Jae-Yoon;Chang, Jo-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.4
    • /
    • pp.1-10
    • /
    • 2006
  • A computational study was carried out in order to investigate the ground effect of a circular cylinder in the presence of a moving wall at a Reynolds number of 2.0${\times}$104. The viscous-incompressible Navier-Stokes equations and Spalart-Allmaras turbulent model of the commercial CFD code were adopted for this numerical analysis. The moving wall was set parallel with the freestream, and the speed of motion was equal to the freestream velocity. The gap ratio is defined as the distance ratio between the circular cylinder diameter and the height from the moving wall. The numerical results show that there are the differences among the each of the stages in evidence of the vorticity contours and the polar diagrams of $C_l$ vs. $C_d$. The 4 stages of the gap ratio are defined according to the flow features, whose stages are divided into small, intermediate, large and convergence gap ratios, respectively.

  • PDF

Impact of Building Blocks on Inundation Level in Urban Drainage Area (지표 건물이 도시유역의 침수특성에 미치는 영향)

  • Lee, Jeong-Young;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.99-107
    • /
    • 2013
  • This study is an impact assessment of building blocks on urban inundation depth and area. LiDAR data is used to generate two original data set in terms of DEM with $5{\times}5$ meter and building block elevation layer of the study drainage area in Cheongju and then the building block elevation layer is modified again to the mesh data with same size to DEM. Two-dimensional inundation analysis is carried out by applying 2D SWMM model. The inundation depth calculated by using the building block elevation layer shows higher reliability than the DEM. This is resulted from the building block interference to surface flow. In addition, the maximum flooded area by DEM is two times wider than the area by building block layer. In the case of the surface velocity, the difference of velocity is negligible in either DEM or building block case in the low building impact zone. However, If the impact of building on the surface velocity was increase, the gap of velocity was significant.