• Title/Summary/Keyword: 2-D discrete systems

Search Result 87, Processing Time 0.024 seconds

Stability Analysis of Kalman Filter by Orthonormalized Compressed Measurement

  • Hyung Keun Lee;Jang Gyu Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.97-107
    • /
    • 2002
  • In this paper, we propose the concept of orthonormalized compressed measurement for the stability analysis of discrete linear time-varying Kalman filters. Unlike previous studies that deal with the homogeneous portion of Kalman filters, the proposed Lyapunov method directly deals with the stochastically-driven system. The orthonorrmalized compressed measurement provides information on the a priori state estimate of the Kalman filter at the k-th step that is propagated from the a posteriori state estimate at the previous block of time. Since the complex multiple-step propagations of a candidate Lyapunov function with process and measurement noises can be simplified to a one-step Lyapunov propagation by the orthonormalized compressed measurement, a stochastic radius of attraction can be derived that would be impractically difficult to obtain by the conventional multiple-step Lyapunov method.

  • PDF

HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC EQUATIONS WITH NONLINEAR COEFFICIENTS

  • MINAM, MOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.244-262
    • /
    • 2022
  • In this paper, we analyze the hybridizable discontinuous Galerkin (HDG) method for second-order elliptic equations with nonlinear coefficients, which are used in many fields. We present the HDG method that uses a mixed formulation based on numerical trace and flux. Under assumptions on the nonlinear coefficient and H2-regularity for a dual problem, we prove that the discrete systems are well-posed and the numerical solutions have the optimal order of convergence as a mesh parameter. Also, we provide a matrix formulation that can be calculated using an iterative technique for numerical experiments. Finally, we present representative numerical examples in 2D to verify the validity of the proof of Theorem 3.10.

Minimum Statistics-Based Noise Power Estimation for Parametric Image Restoration

  • Yoo, Yoonjong;Shin, Jeongho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.41-51
    • /
    • 2014
  • This paper describes a method to estimate the noise power using the minimum statistics approach, which was originally proposed for audio processing. The proposed minimum statistics-based method separates a noisy image into multiple frequency bands using the three-level discrete wavelet transform. By assuming that the output of the high-pass filter contains both signal detail and noise, the proposed algorithm extracts the region of pure noise from the high frequency band using an appropriate threshold. The region of pure noise, which is free from the signal detail part and the DC component, is well suited for minimum statistics condition, where the noise power can be extracted easily. The proposed algorithm reduces the computational load significantly through the use of a simple processing architecture without iteration with an estimation accuracy greater than 90% for strong noise at 0 to 40dB SNR of the input image. Furthermore, the well restored image can be obtained using the estimated noise power information in parametric image restoration algorithms, such as the classical parametric Wiener or ForWaRD image restoration filters. The experimental results show that the proposed algorithm can estimate the noise power accurately, and is particularly suitable for fast, low-cost image restoration or enhancement applications.

Numerical simulation of shear mechanism of concrete specimens containing two coplanar flaws under biaxial loading

  • Sarfarazi, Vahab;Haeri, Hadi;Bagheri, Kourosh
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.459-468
    • /
    • 2018
  • In this paper, the effect of non-persistent joints was determined on the behavior of concrete specimens subjected to biaxial loading through numerical modeling using particle flow code in two dimensions (PFC2D). Firstly, a numerical model was calibrated by uniaxial, Brazilian and triaxial experimental results to ensure the conformity of the simulated numerical model's response. Secondly, sixteen rectangular models with dimension of 100 mm by 100 mm were developed. Each model contains two non-persistent joints with lengths of 40 mm and 20 mm, respectively. The angularity of the larger joint changes from $30^{\circ}$ to $90^{\circ}$. In each configuration, the small joint angularity changes from $0^{\circ}$ to $90^{\circ}$ in $30^{\circ}$ increments. All of the models were under confining stress of 1 MPa. By using of the biaxial test configuration, the failure process was visually observed. Discrete element simulations demonstrated that macro shear fractures in models are because of microscopic tensile breakage of a large number of bonded discs. The failure pattern in Rock Bridge is mostly affected by joint overlapping whereas the biaxial strength is closely related to the failure pattern.

Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression

  • Sarfarazi, V.;Abharian, S.;Ghalam, E. Zarrin
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.99-109
    • /
    • 2021
  • Experimental and discrete element methods were used to investigate the effects of echelon non-persistent joint on the failure behaviour of joint's bridge area under uniaxial compressive test. Concrete samples with dimension of 150 mm×100 mm×50 mm were prepared. Uniaxial compressive strength and tensile strength of concrete were 14 MPa and 1MPa, respectivly. Within the specimen, three echelon non-persistent notches were provided. These joints were distributed on the three diagonal plane. the angle of diagonal plane related to horizontal axis were 15°, 30° and 45°. The angle of joints related to diagonal plane were 30°, 45°, 60°. Totally, 9 different configuration systems were prepared for non-persistent joint. In these configurations, the length of joints were taken as 2 cm. Similar to those for joints configuration systems in the experimental tests, 9 models with different echelon non-persistent joint were prepared in numerical model. The axial load was applied to the model by rate of 0.05 mm/min. the results show that the failure process was mostly governed by both of the non-persistent joint angle and diagonal plane angle. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the shear behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. The strength of samples increase by increasing both of the joint angle and diagonal plane angle. The failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods.

Cellular Automata Transform based Invisible Digital Watermarking in Middle Domain for Gray Images

  • Li, Xiao-Wei;Kim, Seok-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.689-694
    • /
    • 2011
  • Cellular automata are discrete dynamical systems, which provide the basis for the synthesis of complex emergent behavior. This paper proposes a new algorithm of digital watermarking based on cellular automata transform (CAT). The idea of two-dimensional CAT is introduced into the algorithm. After the original image is disassembled with 2D CAT, the watermark information is embedded into the Middle-frequency of the carrier picture. Cellular automata have a huge number of combinations, such as gateway values, rule numbers, initial configuration, boundary condition, etc. Using CAT, the robustness of the watermark will be tremendous strengthened as well as its imperceptibility. Experimental results show that this algorithm can resist some usual attacks such as compression, sharpening and so on. The proposed method is robust to different attacks and is more security.

A Study on Discrete-Event Modeling of a Heterogeneous Web Server System

  • Nahm Eui-seok;Kang E. G.;Chung H. S.;Lee J. H.;Hyun D. C.
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.305-316
    • /
    • 2005
  • A heterogeneous webserver such as an HTTP server should be able to currently deal with numerous users. To the end, it is inevitable to formally analyze web traffics as well as a webserver itself. In particular, as most systems adopt HTTP 1.1 protocol instead of HTTP 1.0 protocol, it is more difficult to represent the system as a simple analytic mode. In addition, since most of previous models missed the detailed processes of the server, it is unsuitable for the current server based on HTTP 1.1 to tune itself with its own system parameters. On the basis of HTTP 1.1 Protocol supporting persistent connections, we thus present an analytical end-to-end tandem queueing model considering specific hardware configurations inside the webserver, which ultimately covers from accepting the customer requests to completing the services.

  • PDF

Characteristics of Block Hydraulic Conductivity of 2-D DFN System According to Block Size and Fracture Geometry (블록크기 및 균열의 기하학적 속성에 따른 2-D DFN 시스템의 블록수리전도도 특성)

  • Han, Jisu;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.450-461
    • /
    • 2015
  • Extensive numerical experiments have been carried out to investigate effect of block size and fracture geometry on hydraulic characteristics of fractured rock masses based on connected pipe flow in DFN systems. Using two fracture sets, a total of 72 2-D fracture configurations were generated with different combinations of fracture size distribution and deterministic fracture density. The directional block conductivity including the theoretical block conductivity, principal conductivity tensor and average block conductivity for each generated fracture network system were calculated using the 2-D equivalent pipe network method. There exist significant effects of block size, orientation, density and size of fractures in a fractured rock mass on its hydraulic behavior. We have been further verified that it is more difficult to reach the REV size for the fluid flow network with decreasing intersection angle of two fracture sets, fracture plane density and fracture size distribution.

Analysis of the thresholds of granular mixtures using the discrete element method

  • Jian, Gong;Jun, Liu
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.639-655
    • /
    • 2017
  • The binary mixture consists of two types of granular media with different physical attributes and sizes, which can be characterized by the percentage of large granules by weight (P) and the particle size ratio (${\alpha}$). Researchers determine that two thresholds ($P_S$ and $P_L$) exist for the peak shear strength of binary mixtures, i.e., at $P{\leq}P_S$, the peak shear strength is controlled by the small granules; at $P{\leq}P_L$, the peak shear strength is controlled by the large granules; at $P_S{\leq}P{\leq}P_L$, the peak shear strength is governed by both the large and small granules. However, the thresholds of binary mixtures with different ${\alpha}$ values, and the explanation related to the inner details of binary mixtures to account for why these thresholds exist, require further confirmation. This paper considers the mechanical behavior of binary mixtures with DEM analysis. The thresholds of binary mixtures are found to be strongly related to their coordination numbers $Z_L$ for all values of ${\alpha}$, where $Z_L$ denotes the partial coordination number only between the large particles. The arrangement structure of the large particles is examined when P approaches the thresholds, and a similar arrangement structure of large particles is formed in both 2D and 3D particle systems.

Experimental and numerical investigation of a surface-fixed horizontal porous wave barrier

  • Poguluri, Sunny Kumar;Kim, Jeongrok;George, Arun;Cho, I.H.
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Experimental and numerical investigations were conducted to study the performance of a surface-fixed horizontal porous wave barrier in regular waves. The characteristics of the reflection and transmission coefficients, energy dissipation, and vertical wave force were examined versus different porosities of the barrier. Numerical simulations based on 3D Reynolds Averaged Navier-Stokes equations with standard low-Re k-ε turbulent closure and volume of fluid approach were accomplished and compared with the experimental results conducted in a 2D wave tank. Experimental measurements and numerical simulations were shown to be in satisfactory agreement. The qualitative wave behavior propagating over a horizontal porous barrier such as wave run-up, wave breaking, air entrapment, jet flow, and vortex generation was reproduced by CFD computation. Through the discrete harmonic decomposition of the vertical wave force on a wave barrier, the nonlinear characteristics were revealed quantitatively. It was concluded that the surface-fixed horizontal barrier is more effective in dissipating wave energy in the short wave period region and more energy conversion was observed from the first harmonic to higher harmonics with the increase of porosity. The present numerical approach will provide a predictive tool for an accurate and efficient design of the surface-fixed horizontal porous wave barrier.