• Title/Summary/Keyword: 2-D cylinder

Search Result 436, Processing Time 0.028 seconds

Numerical Analysis of Flow around Rectangular Cylinders with Various Side Ratios

  • Rokugou Akira;Okajima Atsushi;Kamiyama Kohji
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.36-37
    • /
    • 2003
  • Three-dimensional numerical analysis of the flow around rectangular cylinders with various side ratios, D/H, from 0.2 to 2.0 is carried out for Reynolds number of 1000 by using multi-directional finite difference method in multi-grid. The predicted results are well compared with the experimental data. It is found that fluid dynamics characteristics alternate between high pressure mode. and low pressure mode of the base pressure for rectangular cylinder of D/H=0.2-0.6.

  • PDF

Couette-Poiseuille flow based non-linear flow over a square cylinder near plane wall

  • Bhatt, Rajesh;Maiti, Dilip K.;Alam, Md. Mahbub;Rehman, S.
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.331-341
    • /
    • 2018
  • A numerical study on the flow over a square cylinder in the vicinity of a wall is conducted for different Couette-Poiseuille-based non-uniform flow with the non-dimensional pressure gradient P varying from 0 to 5. The non-dimensional gap ratio L (=$H^{\ast}/a^{\ast}$) is changed from 0.1 to 2, where $H^{\ast}$ is gap height between the cylinder and wall, and $a^{\ast}$ is the cylinder width. The governing equations are solved numerically through finite volume method based on SIMPLE algorithm on a staggered grid system. Both P and L have a substantial influence on the flow structure, time-mean drag coefficient ${\bar{C}}_D$, fluctuating (rms) lift coefficient ($C_L{^{\prime}}$), and Strouhal number St. The changes in P and L leads to four distinct flow regimes (I, II, III and IV). Following the flow structure change, the ${\bar{C}}_D$, $C_L{^{\prime}}$, and St all vary greatly with the change in L and/or P. The ${\bar{C}}_D$ and $C_L{^{\prime}}$ both grow with increasing P and/or L. The St increases with P for a given L, being less sensitive to L for a smaller P (< 2) and more sensitive to L for a larger P (> 2). A strong relationship is observed between the flow regimes and the values of ${\bar{C}}_D$, $C_L{^{\prime}}$ and St. An increase in P affects the pressure distribution more on the top surface than on bottom surface while an increase in L does the opposite.

Control of vortex shedding from circular cylinder by acoustic excitation (원통내부의 음향여기에 의한 와류유출제어)

  • Kim, Gyeong-Cheon;Bu, Jeong-Suk;Lee, Sang-Uk;Gu, Myeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1649-1660
    • /
    • 1996
  • The flow around a circular cylinder was controlled by an acoustic excitation issued from a thin slit along the cylinder axis. The static pressure distributions around the cylinder wall and flow characteristics in the near wake have been measured. Experiments were performed under three cases of Reynolds number, 7.8 * 10$\^$4/, 2.3 * 10$\^$5/ and 3.8 * 10$\^$5/. The effects of excitation frequency, sound pressure level and the location of the slit were examined. Data indicate that the excitation frequency and the slit location are the key parameters for controlling the separated flow. At Re$\_$d/, = 7.8 * 10$\^$4/, the drag is reduced and the lift is generated to upward direction, however, at Re$\_$d/, =2.3 * 10$\^$5/ and 3.8 * 10$\_$5/, the drag is increased and lift is generated to downward direction inversely. It is thought that the lift switching phenomenon is due to the different separation point of upper surface and lower surface on circular cylinder with respect to the flow regime which depends on the Reynolds number. Vortex shedding frequencies are different at upper side and lower side. Time-averaged velocity field shows that mean velocity vector and the points of maximum intensities are inclined to downward direction at Re$\_$d/ = 7.8 * 10$\^$4/, but are inclined to upward direction at Re$\_$d/ = 2.3 * 10$\^$5/.

Thermal Behavior Analysis on the Cylinder Block of an Automotive Gasoline Engine (자동차용 가솔린 기관의 실린더 블록에 대한 열적 거동 해석)

  • 손병진;김창헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.211-221
    • /
    • 1998
  • Thermal behavior on the cylinder block of a 4-cylinder, 4-stroke 2.0L SOHC gasoline engine was numerically and experimentally analyzed. The numerical calculation was performed using the finite element method. The cylinder block was modelled as a three dimensional finite element by considering its geometry. The physical domain was devided into hexahedron elements. 16 thermocouples were installed at points of 2mm inside from cylinder wall near top ring of piston in cylinder block, which points have suffered major thermal loads and suggested as proper measurement points for engine design by industrial engineers. Under full load and 9$0^{\circ}C$ coolant temperature condition, temperature behavior of cylinder block according to engine speed were analyzed. The results showed that temperature rose gradually to conform to a function of 2nd~4th order of engine speed at intake side, exhaust and siamese side, respectively. As engine load was changed from 100 to 50% by 25% step, temperature curve also conformed to 2nd~7th order function of engine speed. Temperature differences by load condition were similar among 100, 75% and 50%. Under full load and coolant temperature of 11$0^{\circ}C$, temperature behavior were also analyzed and the result also showed conformance to 2n d~7th order function of engine speed. Temperature curve was transferred in parallel upwards corresponding coolant temperature rise.

  • PDF

Development of Genetic Algorithm based 3D-PTV and its Application to the Measurement of the Wake of a Circular Cylinder (GA기반 3D-PTV 개발과 원주 후류계측)

  • Doh, D.H.;Cho, G.R.;Cho, Y.B.;Moon, J.S.;Pyun, Y.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.548-554
    • /
    • 2001
  • A GA(Genetic Algorithm) based 3D-PTV technique has been developed. The measurement system consists of three CCD cameras, Ar-ion laser, an image grabber and a host computer. The fundamental of the developed technique was based on that one-to-one correspondence is found between two tracer particles selected at two different image frames taking advantage of combinatorial optimization of the genetic algorithm. The fitness function controlling reproductive success in the genetic algorithm was expressed by a kind of continuum theory on the sparsely distributed particles in space. In order to verify the capability of the constructed measurement system, a performance test was made using the LES data set of an impinging jet. The developed 3D-PTV system was applied to the measurement of flow characteristics of the wake of a circular cylinder.

  • PDF

Study on Flow Around Circular Cylinder Advancing Beneath Free Surface (자유표면 밑을 전진하는 원주 주위의 유동에 관한 연구)

  • Yi, Hyuck-Joon;Shin, Hyun-Kyung;Yoon, Bum-Sang
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.16-21
    • /
    • 2013
  • The flow around a circular cylinder advancing beneath the free surface is numerically investigated using a VOF method. The simulations cover Froude numbers in the range of 0.2~0.6 and gap ratios (h/d) in the range of 0.1~2.0, where h is the distance from the free surface to a cylinder, and d is the diameter of a cylinder at Reynolds number 180. It is observed that the vortex suppression effect and surface deformation increase as the gap ratio decreases or the Froude number increases. The most important results of the present study are as follows. The proximity of the free surface causes an initial increase in the Strouhal number and drag coefficient, and the maximum Strouhal number and drag coefficient occur in the range of 0.5~0.7. However, this trend reverses as the gap ratio becomes small, and the lift coefficient increases downward as the gap ratio decreases.

Hydrodynamic Interference between Two Circular Cylinders in Tandem and Side by Side Arrangements (직렬 및 병렬배열에서 2원주의 유체역학적 간섭)

  • 노기덕;박지태;강호근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2003
  • The hydrodynamic interference between two circular cylinders in tandem and side by side arrangements was investigated by measuring of lift and drag on each cylinder. The time variations of interference lift and drag coefficients in each arrangement were observed at center-to-center pitch ratios of P/D=1.25 and 2.5 and Reynolds number of $Re=1.5\times10^4$. Average interference lift and drag coefficients were also observed at pitch ratios from P/D=1.25 to 2.5 and Reynolds number from $Re=1.5\times10^4$ to $1.5\times10^4$. The hydrodynamic interference between two circular cylinders differed with the shape of the arrangement and the pitch ratio, but the characteristics were revealed by measuring of lift and drag on each cylinder.

Three-dimensional Laminar Flow Past a Rotating Cylinder (회전하는 원형 실린더 주위의 층류 유동장에 관한 수치적 연구)

  • Lee, Yong-Suk;Yoon, Hyun-Sik;Doo, Jeong-Hoon;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.827-833
    • /
    • 2009
  • The present study numerically investigates three-dimensional laminar flow past a rotating circular cylinder placed in a uniform stream. For the purpose of a careful analysis of the modification of flow by the effect of the rotation on the flow, numerical simulations are performed at a various range of rotational coefficients ($0{\leq}{\alpha}{\leq}2.5$) at one Reynolds number of 300. As ${\alpha}$ increases, flow becomes stabilized and finally a steady state beyond the critical rotational coefficient. The 3D (three dimensional) wake mode of the stationary cylinder defined at this Reynolds number has been disorganized according to ${\alpha}$, which were observed by the visualization of 3D vortical structures. The variation of the Strouhal number is very weak when the wake pattern is changed according to the rotational coefficient. As ${\alpha}$ increases, the lift increases, whereas the drag decreases.

Three-dimensional Laminar Flow past a Rotating Cylinder (회전하는 원형 실린더 주위의 층류 유동장에 관한 수치적 연구)

  • Lee, Yong-Suk;Doo, Jeong-Hoon;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2733-2737
    • /
    • 2008
  • The present study numerically investigates three-dimensional laminar flow past a rotating circular cylinder placed in a uniform stream. For the purpose of a careful analysis of the modification of flow by the effect of the rotation on the flow, numerical simulations are performed at a various range of rotational speeds($0{\leq}{\alpha}{\leq}2.5$) at one Reynolds number of 300. As $\alpha$ increases, flow becomes stabilized and finally a steady state beyond the critical rotational speed. The 3D (three dimensional) wake mode of the stationary cylinder defined at this Reynolds number has been disorganized according to $\alpha$, which were observed by the visualization of 3D vortical structures. The variation of the Strouhal number is significant when the wake pattern is changed according to the rotational speed. As $\alpha$ increases, the lift increases, whereas the drag decreases.

  • PDF

An Experimental Study on Pressure-resistant Performance of a Re-fillable LPG Cylinder (LPG 재충전 소형 용기의 내압성능에 관한 실험적 연구)

  • Yim, Sang-Sik;Jang, Kap-Man;Lee, Jin-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.16-20
    • /
    • 2014
  • In this paper, the performance of pressure-resistance is validated by experiment on LPG re-fillable cylinder which has increased demands for spreading of camp culture. Propane has increased suppliable requirements as fuel because of easily vaporizing effect of low boiling point. However, propane can be occurring safety problems inevitably by high vapor pressure. So, the priority is that safe cylinder should furnish in order to be circulated as safe fuel. LPG re-fillable cylinder for high pressure is tried to furnish internationally, that is restricted by safe issues. For these reasons, the pressurization and rupture are performed by using pressurizing device that is operated by hydraulic system. Also, this paper will offer rupturable characteristics comparing with vapor pressure of propane. This paper is expected as basis research for developing re-fillable cylinder and using standard for supplying them.