• Title/Summary/Keyword: 2-D airfoil

Search Result 85, Processing Time 0.021 seconds

Optimum Inverse Design of 2-D Cascade Airfoil (2차원 익렬 익형의 최적역설계)

  • 조장근;박원규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • The present paper describes the optimum inverse design of 2-D linear cascade airfoil. The pressure coefficient of an airfoil surface is taken as the objective function, and non-orthogonal incompressible Navier-Stokes equation is applied to calculate the pressure coefficient. Both of steepest descent and conjugate gradient method have been used to make the objective function go to zero. The 1st order finite differential method is applied to the searching direction and the golden section method is used to compute the searching distance. As a result of the present work, a good convergence to the target airfoil has been obtained.

A Study on 2-D Airfoil Design Optimization by Kriging (Kriging 방법을 이용한 2차원 날개 형상 최적설계에 대한 연구)

  • Ka Jae Do;Kwon Jang Hyuk
    • Journal of computational fluids engineering
    • /
    • v.9 no.1
    • /
    • pp.34-40
    • /
    • 2004
  • Recently with growth in the capability of super computers and Parallel computers, shape design optimization is becoming easible for real problems. Also, Computational Fluid Dynamics(CFD) techniques have been improved for higher reliability and higher accuracy. In the shape design optimization, analysis solvers and optimization schemes are essential. In this work, the Roe's 2nd-order Upwind TVD scheme and DADI time march with multigrid were used for the flow solution with the Euler equation and FDM(Finite Differenciation Method), GA(Genetic Algorithm) and Kriging were used for the design optimization. Kriging were applied to 2-D airfoil design optimization and compared with FDM and GA's results. When Kriging is applied to the nonlinear problems, satisfactory results were obtained. From the result design optimization by Kriging method appeared as good as other methods.

A Fundamental Study on Wind Turbine Model of the Wind Power Generation (풍력발전용 모형터빈에 관한 기초적연구)

  • Kim, J.H.;Nam, C.D.;Kim, Y.H.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.1014-1019
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

CFD Simulation of NACA 2412 airfoil with new cavity shapes

  • Merryisha, Samuel;Rajendran, Parvathy;Khan, Sher Afghan
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.131-148
    • /
    • 2022
  • The paper presents the surface-modified NACA 2412 airfoil performance with variable cavity characteristics such as size, shape and orientation, by numerically investigated with the pre-validation study. The study attempts to improve the airfoil aerodynamic performance at 30 m/s with a variable angle of attack (AOA) ranging from 0° to 20° under Reynolds number (Re) 4.4×105. Through passive surface control techniques, a boundary layer control strategy has been enhanced to improve flow performance. An intense background survey has been carried out over the modifier orientation, shape, and numbers to differentiate the sub-critical and post-critical flow regimes. The wall-bounded flows along with its governing equations are investigated using Reynolds Average Navier Strokes (RANS) solver coupled with one-equational transport Spalart Allmaras model. It was observed that the aerodynamic efficiency of cavity airfoil had been improved by enhancing maximum lift to drag ratio ((l/d) max) with delayed flow separation by keeping the flow attached beyond 0.25C even at a higher angle of attack. Detailed investigation on the cavity distribution pattern reveals that cavity depth and width are essential in degrading the early flow separation characteristics. In this study, overall general performance comparison, all the cavity airfoil models have delayed stalling compared to the original airfoil.

Predicting the Aerodynamic Characteristics of 2D Airfoil and the Performance of 3D Wind Turbine using a CFD Code (CFD에 의한 2D 에어포일 공력특성 및 3D 풍력터빈 성능예측)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.549-557
    • /
    • 2008
  • Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(${\kappa}-\;{\varepsilon}$) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization

  • Wang, Xinjing;Song, Baowei;Wang, Peng;Sun, Chunya
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.730-740
    • /
    • 2018
  • Hydrofoil is the direct component to generate thrust for underwater glider. It is significant to improve propulsion efficiency of hydrofoil. This study optimizes the shape of a hydrofoil using Free-Form Deformation (FFD) parametric approach and Surrogate-based Optimization (SBO) algorithm. FFD approach performs a volume outside the hydrofoil and the position changes of control points in the volume parameterize hydrofoil's geometric shape. SBO with adaptive parallel sampling method is regarded as a promising approach for CFD-based optimization. Combination of existing sampling methods is being widely used recently. This paper chooses several well-known methods for combination. Investigations are implemented to figure out how many and which methods should be included and the best combination strategy is provided. As the hydrofoil can be stretched from airfoil, the optimizations are carried out on a 2D airfoil and a 3D hydrofoil, respectively. The lift-drag ratios are compared among optimized and original hydrofoils. Results show that both lift-drag-ratios of optimized hydrofoils improve more than 90%. Besides, this paper preliminarily explores the optimization of hydrofoil with root-tip-ratio. Results show that optimizing 3D hydrofoil directly achieves slightly better results than 2D airfoil.

AERODYNAMIC DESIGN OPTIMIZATION OF OA AIRFOIL USING THE RESPONSE SURFACE METHOD (반응면 기법을 사용한 OA 익형의 공력 최적 설계)

  • Sa, J.H.;Park, S.H.;Kim, C.J.;Yun, C.Y.;Kim, S.H.;Kim, S.H.;Lee, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.51-56
    • /
    • 2009
  • Optimization with metamodel is one of numerical optimization methods. Response surface method is performed for making metamodel. The Hcks-Henne function is used for designing 2D shape of the airfoil and spring analogy is used to change the grid according to the change in shape of the airfoil. Aerodynamic coefficient required for response surface method are obtained by using Navier-Stokes solver with $\kappa-\omega$ shear stress transport turbulence model. For the baseline airfoils, OA 312, OA 309, and OA 407 airfoils select and optimize to improve aerodynamic performance.

  • PDF

Aerodynamic Characteristics of the Original Airfoil KA2 for the Application of Wind Turbine Blade (풍력 블레이드 적용을 위한 고유익형 KA2의 공력특성)

  • Woo, Young-Jin;Kang, Deok-Hun;Lee, Jang-Ho
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • The new aerofoil, KA2 was designed to apply to the wind turbine blade. For the aerofoil, numerical analysis was performed to review aerodynamic characteristics like lift and drag coefficient. And they are verified with test data using the digital wind tunnel and test samples from 3D printer. The digital wind tunnel was developed to test wing in the small laboratory, and verified with test of NACA0012 airfoil. KA2 aerofoil is asymmetric, and has the thickness ratio of 14%, and 12 degree of AOA at the maximum lift coefficient of 1.3. In this paper, aerodynamic characteristics from numerical and test approaches will be proposed with AOA in detail. Therefore, this aerofoil will be used for the design of wind turbine blade.

The Aerodynamic Characteristics of Shape Deformation of Airfoil according to Field Repair of MW-Class Wind Turbine Blade (MW급 풍력 Blade의 Field수리로 인한 Airfoil의 형상 변형에 따른 공력특성)

  • Yu, Hong-Seok;Lee, Jang-Chang
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.654-658
    • /
    • 2014
  • 풍력발전은 재생에너지로써 유망한 대체 에너지원으로 각광받고 있으며, 국내에서는 이미 영덕, 영양 등의 풍력단지가 가동 중에 있다. 그러나 장기간 사용되어온 터빈이 반 이상이며, 그 중에서도 바람의 영향을 많이 받는 블레이드는 끝단 Tip이 벌어지는 파손이 발생하곤 한다. Blade Field의 유지보수를 통해 수명연장이 가능하나, 형상변화로 공력특성에 영향을 미치게 된다. 본 연구에서는 MEXICO 터빈용 블레이드의 Tip부분에 대해서 EDISON을 활용하여, 수리로 인해 변경된 Blade의 공력특성 변화를 분석하였다. 형상변경은 상용 프로그램 Pontwise로 작업했으며, 익형 주위의 유동을 2D비압축성 유동으로 가정하고 EDISON CFD의 2D_Incomp-2.1_P solver를 수치해석을 수행하였다.

  • PDF

Application of EDISON CFD in The Aerodynamic Design for Supercritical Airfoil (EDISON CFD를 이용한 초임계 에어포일의 공력설계)

  • Yu, Hong-Seok;Lee, Jang-Chang
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.343-348
    • /
    • 2013
  • 초임계 익형은 천음속 영역에서 비행하는 상업용 민간 항공기와 전투기 날개의 공력성능을 향상시키기 위해 Whitcomb R. T.가 제안 하였다. 초임계 익형은 상부표면을 평평하게 디자인하여 임계마하수보다 큰 마하수에서 나타나는 익형 주위의 충격파 출현을 지연시킴으로써 항력을 줄일 수 있고, 상부 표면의 평면 설계로 인한 양력 감소를 보정하기 위하여 하부 표면의 꼬리부분에 캠버가 있는 형상을 하고 있다. 본 연구에서는 EDISON CFD를 이용하여, 초임계 익형의 공력특성을 해석하고 Xfoil의 data와 비교 분석하였다. 또한, 초임계 익형의 형상을 변경하여 두께와 뒷전 캠버가 다른 초임계 익형을 설계하였다. 새로운 초임계 익형의 형상은 상용 프로그램 Maple12을 이용하여 Whitcomb Integral Supercritical Airfoil의 형상을 수정하여 구할 수 있다. 초임계 익형 주위의 유동을 2D압축성 유동으로 가정하고 EDISON CFD의 2D_Comp-2.0 솔버를 사용하여 수치해석을 수행하였다.

  • PDF