• Title/Summary/Keyword: 2-D advection-dispersion equation

Search Result 10, Processing Time 0.023 seconds

Finite difference TVD scheme for modeling two-dimensional advection-dispersion

  • Guan, Y.;Zhang, D.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.22-27
    • /
    • 2006
  • This paper describes the development of the stream-tube based dispersion model for modeling contaminant transport in open channels. The operator-splitting technique is employed to separate the 2D contaminant transport equation into the pure advection and pure dispersion equations. Then the total variation diminishing (TVD) schemes are combined with the second-order Lax-Wendroff and third-order QUICKEST explicit finite difference schemes respectively to solve the pure advection equation in order to prevent the occurrence of numerical oscillations. Due to various limiters owning different features, the numerical tests for 1D pure advection and 2D dispersion are conducted to evaluate the performance of different TVD schemes firstly, then the TVD schemes are applied to experimental data for simulating the 2D mixing in a straight trapezoidal channel to test the model capability. Both the numerical tests and model application show that the TVD schemes are very competent for solving the advection-dominated transport problems.

  • PDF

Development of 2-D Advection-Dispersion Model with Dispersion Tensor Considering Velocity Field (유속장을 고려한 분산텐서를 포함한 2차원 이송-분산모형의 개발)

  • Seo, Il Won;Lee, Myung Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.171-178
    • /
    • 2006
  • The finite element model based on the 2-D advection-dispersion equation incorporating the dispersion tensor that is calculated using velocity field data was developed in order to analyze more accurately 2-D mixing of pollutants for meandering streams. The proposed model was tested using the straight channel that inclined at 45o in the Cartesian coordinate system. The simulation results showed that dispersion tensor model using velocity field data gives an accurate solution. The suitability of the proposed model in analyzing actual pollutant mixing in meandering channels was demonstrated by comparing the simulation results with experimental data obtained from the tracer tests in the laboratory flume. Comparison results showed that the proposed model with dispersion tensor can represents more accurately the mixing phenomena of the pollutants in the meandering channels in which the direction of the primary flow is varying periodically along the channel.

Time-split Mixing Model for Analysis of 2D Advection-Dispersion in Open Channels (개수로에서 2차원 이송-분산 해석을 위한 시간분리 혼합 모형)

  • Jung, Youngjai;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.495-506
    • /
    • 2013
  • This study developed the Time-split Mixing Model (TMM) which can represent the pollutant mixing process on a three-dimensional open channel through constructing the conceptual model based on Taylor's assumption (1954) that the shear flow dispersion is the result of combination of shear advection and diffusion by turbulence. The developed model splits the 2-D mixing process into longitudinal mixing and transverse mixing, and it represents the 2-D advection-dispersion by the repetitive calculation of concentration separation by the vertical non-uniformity of flow velocity and then vertical mixing by turbulent diffusion sequentially. The simulation results indicated that the proposed model explains the effect of concentration overlapping by boundary walls, and the simulated concentration was in good agreement with the analytical solution of the 2-D advection-dispersion equation in Taylor period (Chatwin, 1970). The proposed model could explain the correlation between hydraulic factors and the dispersion coefficient to provide the physical insight about the dispersion behavior. The longitudinal dispersion coefficient calculated by the TMM varied with the mixing time unlike the constant value suggested by Elder (1959), whereas the transverse dispersion coefficient was similar with the coefficient evaluated by experiments of Sayre and Chang (1968), Fischer et al. (1979).

Development of Sequential Mixing Model for Analysis of Shear Flow Dispersion (전단류 분산 해석을 위한 순차혼합모형의 개발)

  • Seo, Il Won;Son, Eun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.335-344
    • /
    • 2006
  • In this study, sequential mixing model (SMM) was proposed based on the Taylor's theory which can be summarized as the fact that longitudinal advection and transverse diffusion occur independently and then the balance between the longitudinal shear and transverse mixing maintains. The numerical simulation of the model were performed for cases of different mixing time and transverse velocity distribution, and the results were compared with the solutions of 1-D longitudinal dispersion model (1-D LDM) and 2-D advection-dispersion model (2-D ADM). As a result it was confirmed that SMM embodies the Taylor's theory well. By the comparison between SMM and 2-D ADM, the relationship between the mixing time and the transverse diffusion coefficient was evaluated, and thus SMM can integrate 2-D ADM model as well as 1-D LDM model and be an explanatory model which can represents the shear flow dispersion in a visible way. In this study, the predicting equation of the longitudinal dispersion coefficient was developed by fitting the simulation results of SMM to the solution of 1-D LDM. The verification of the proposed equation was performed by the application to the 38 sets of field data. The proposed equation can predict the longitudinal dispersion coefficient within reliable accuracy, especially for the river with small width-to-depth ratio.

An Experimental Study of Flow and Dispersion Characteristics in Meandering Channel (사행수로에서의 유속 및 분산특성에 관한 실험적 연구)

  • Park, Sung-Won;Seo, Il-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.799-802
    • /
    • 2008
  • General behaviors based on hydraulic characteristics of natural streams and channels have been recently analyzed and developed via various numerical models. However in the states of natural hydraulics, an experimental research must be performed simultaneously with the mathematical analysis due to effects of hydraulic properties such as meander, sediment, and so on. In this study based on 2-D advection-dispersion equation, flow and tracer experiments were performed in the S-curved meandering laboratory channel with a rectangular cross-section. The channel was equipped with instrument carriages which was equipped with an auto-traversing system to be used with velocity measuring sensors throughout the depth and breadth of the flow field. To measure concentration distribution of the salt solution was adjusted to that of the flume water by adding methanol and a red dye (KMnO4) was added to aid the visualization of the tracer cloud, the tracer was instantaneously injected into the flow as a full-depth vertical line source by the instantaneous injector and the initial concentration of the tracer was 100,000 mg/l. The secondary current as well as the primary flow pattern was analyzed to investigate the flow distribution in the meandering channels. The velocity distribution of the primary flow for all cases skewed toward the inner bank at the first bend, and was almost symmetric at the crossovers, and then shifted toward the inner bank again at the next alternating bend. Thus, one can clearly notice that the maximum velocity occurs taking the shortest course along the channel, irrespective of the flow conditions. The result of the tracer tests shows that pollutant clouds are spreading following the maximum velocity lines in each cases with various mixing patterns like superposition, separation, and stagnation of pollutant clouds. Flow characteristics in each cases performed in this study can be compared with tracer dispersion characteristics with using evaluation of longitudinal and transverse dispersion coefficients(LDC, TDC). As expected, LDC and TDC in meandering parts have been evaluated with increasing distribution and straight parts have effected to evaluate minimum of LDC and TDC due to symmetric flow patterns and attenuations of secondary flow.

  • PDF

3-D Dispersive Transport Model for Turbidity Plume induced by Dredging Operation (준설 탁도플륨의 3차원 이송확산 거동 모형)

  • Kang, See Whan;Kang, In Nam;Lee, Jung Lyul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.557-562
    • /
    • 2006
  • In order to predict the dispersion of suspended sediment arising from dredging operation in port and navigation channel, a hybrid model for dispersive transport of turbidity plume was developed using Lee's(1998) hybrid method. Using hybrid modeling scheme advection-diffusion equation was solved by the forward particle-tracking method for advection process and by the fixed Eulerian grid method for diffusion process. To examine numerical model simulation in accuracy, the simulated results for 1-D, 2-D, and 3-D cases were compared with the analytical solutions including Kuo, et al's (1985) 3-D mathematical model. The model results were in a good agreement with the analytical solutions and mathematical model for the dispersion of turbidity plume.

A radial point interpolation method for 1D contaminant transport modelling through landfill liners

  • Praveen Kumar, R.;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.141-156
    • /
    • 2010
  • In the framework of meshfree methods, a new methodology is developed based on radial point interpolation method (RPIM). This methodology is applied to a one-dimensional contaminant transport modelling in the saturated porous media. The one-dimensional form of advection-dispersion equation involving reactive contaminant is considered in the analysis. The Galerkin weak form of the governing equation is formulated using 1D meshfree shape functions constructed using thin plate spline radial basis functions. MATLAB code is developed to obtain the numerical solution. Numerical examples representing various phenomena, which occur during migration of contaminants, are presented to illustrate the applicability of the proposed method and the results are compared with those obtained from the analytical and finite element solutions. The proposed RPIM has generated results with no oscillations and they are insensitive to Peclet constraints. In order to test the practical applicability and performance of the RPIM, three case studies of contaminant transport through the landfill liners are presented. A good agreement is obtained between the results of the RPIM and the field investigation data.

Prediction of Leachate Migration from Waste Disposal Site to Underground LPG Storage Facility and Review of Contamination Control Method by Numerical Simulations (수치모의를 통한 지하 LPG 저장시설에 인접한 폐기물매립지에서의 침출수이동 예측 및 제어공법 검토)

  • 한일영;서일원;오경택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.51-59
    • /
    • 1996
  • In case waste disposal site is to be constructed close to the underground facilities such as LPG storage cavern which is completely maintained by groundwater pressure, it is generally requested that the possibility on leachate contamination of cavern area be reviewed and the countermeasure, if it is estimated cavern area is severely affected by leachate, be taken into consideration. Prediction was performed and leachate control plan was made using by analytical and the numerical analysis on the leachate migration which is likely to happen at the area between the proposed waste disposal site and the underground LPG storage cavern located at the U petrochemical complex. Analytical solutions were obtained by the conservative mass advection-diffusion equation and the effect of advection and dispersion factor on the leachate migration was reviewed through peclet number calculation and the functional relationship between the factors and leachate transport velocity was established, which leads to enable us to predict the leachate transport velocity without difficulties when different parameters (factors) are used for analytical solution. Numerical solutions were obtained by FEM using AQUA2D which is for the simulation of groundwater flow and contaminant transport. 3-D discrete fracture models were simulated and fracture flow analysis was performed and feasibility study on the water-curtain system was conducted through the fracture connectivity analysis in rock mass. As results of those analyses, it was interpreted that the leachate would trespass on the LPG storage cavern area in 30 years from the proposed wate disposal site and the vertical water-curtain system was effective mathod for the prevention of leachate's migration further into the cavern area.

  • PDF

Horizontal 2-D Finite Element Model for Analysis of Mixing Transport of Heat Pollutant (열오염 혼합 거동 해석을 위한 수평 2차원 유한요소모형)

  • Seo, Il Won;Choi, Hwang Jeong;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.507-514
    • /
    • 2011
  • A numerical model has been developed by employing a finite element method to simulate the depth-averaged 2-D dispersion of the heat pollutant, which is an important pollutant material in natural streams. Among the finite element methods, the Streamline Upwind/Petrov Galerkin (SUPG) method was applied. Also both linear and quadratic elements can be applied so that irregular river boundaries can be easily represented. To show the movement of heat pollutants, the reaction term describing heat transfer was represented as an equation in which sink/source term is proportional to the difference between the equilibrium temperature and water surface temperature. The equation was expressed so that the water surface temperature changes according to the temperature transfer coefficient and the equilibrium temperature. For the calibration of the model developed, analytic and numerical results from a case of rectangular channel with full width continuous injection have been compared in a steady state. The comparisons showed that the numerical results were in good agreement with analytical solutions. The application site was selected from the downstream of Paldang dam to Jamsil submerged weir, and overall length of this site is about 22.5 km. The change of water temperature caused by the discharge from the Guri sewage treatment plant has been simulated, and results were similar to the observed data. Overall it is concluded that the developed model can represent the water temperature changes due to heat transport accurately. But the verification using observed data will further enhance the validity of the model.

Flow and Mixing Behavior at the Tidal Reach of Han River (한강 감조구간에서의 흐름 및 혼합거동)

  • Seo, Il Won;Song, Chang Geun;Lee, Myung Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.731-741
    • /
    • 2008
  • Previous studies on the numerical simulation at the tidal reach of Han River tend to restrict downstream boundary as Jeon-ryu station due to difficulties in gaining cross section data and tidal elevation values at Yu-do. But, in this study, geometries beyond the confluence of Gok-reung stream and Im-jin River are constructed based on the numerical sea map; tidal elevation at the downstream boundary, Yu-do is estimated by harmonic analysis of In-cheon tide gage station so that hydrodynamic and diffusion behavior have been analyzed. The domain ranging from Shin-gok submerged weir to Yu-do is selected (which is 36.8 km in length). RMA-2 and RAM4 developed by Il Won Seo (2008) are applied to simulate flow and diffusion behavior, respectively. Numerical results of flow characteristic are compared with the measured data at Jeon-ryu station. Simulation is carried out from June 23 to 25 in 2006 on the ground that hydrologic data is satisfactory and tidal difference is huge during that period. The result shows that reverse flow occurs 5 times according to the tidal elevation at Yu-do and the maximum reverse flow is observed up to Jang-hang IC, which is 32.9 km in length. Also analysis is focused on the process of generation and disappearance of reverse flow, the distribution of water surface elevation and velocity along the maximum velocity line, and the transport of nonconservative pollutant. Pollutant injected from Gul-po stream spreads widely across the river; however, the size of BOD cloud entering from Gok-reung stream is relatively small because water depth at the mid and left side becomes deeper and maximum velocity occurs along the right bank so that transverse mixing is completed quickly. Finally, mixing characteristic of horizontal salinity distribution is obtained by estimating the salinity input with analytical solution of 1D advection-dispersion equation.