• Title/Summary/Keyword: 2-D FE analysis

Search Result 429, Processing Time 0.026 seconds

Microstructure, Electrical Property and Nonstoichiometry of Light Enhanced Plating(LEP) Ferrite Film

  • 김 돈;이충섭;김영일
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.533-539
    • /
    • 1998
  • A magnetic film was deposited on a slide glass substrate from aqueous solutions of $FeCl_2$ and $NaNO_2$ at 363 K. XRD analysis showed that the film was polycrystalline magnetite $(Fe_{3(1-{\sigma})}O_4)$ without impurity phase. The lattice constant was 0.8390 nm. Mossbauer spectrum of the film could be deconvoluted by the following parameters: isomer shifts for tetrahedral $(T_d)$ and octahedral $(O_h)$ sites are 0.28 and 0.68 mm/s, respectively, and corresponding magnetic hyperfine fields are 490 and 458 kOe, respectively. The estimated chemical formula of the film by the peak intensity of Mossbauer spectrum was $Fe_{2.95}O_4$. Low temperature transition of the magnetite (Verwey transition) was not detected in resistivity measurement of the film. Properties of the film were discussed with those of pressed pellet and single crystal of synthetic magnetites. On the surface of the film, magnetite particles of about 0.2 μm in diameter were identified by noncontact atomic force microscopy (NAFM) and magnetic force microscopy (MFM).

Study on the Sheet Metal Forming of the Brake Chamber Head using the Finite Element Analysis (유한요소해석을 이용한 브레이크 챔버 헤드 판재 성형에 관한 연구)

  • Lee, S.I.;Choi, D.H.;Lee, J.W.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.79-86
    • /
    • 2017
  • In this study, the sheet metal forming process of the brake chamber head, which had a complex shape compared to the conventional head part, was investigated using finite element (FE) analysis. In order to prevent the forming failures such as necking and fracture, the multi-stage forming process was introduced. The forming process consisted of three steps: (1) first drawing, (2) second drawing, (3) final forming. Experimental and FE simulated results of the brake chamber head were compared, and the results showed that the required characteristics of the straightness and the wall thickness at each location were satisfied.

Parametric Design on Bellows of Piping System Using Fuzzy Knowledge Processing

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

Seismic Response Analysis of Soil-Pile-Structure Interaction System considering the Underground Cavity (지중공동을 고려한 지반-말뚝-구조물 상호작용계의 지진응답해석)

  • 김민규;임윤묵;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.117-124
    • /
    • 2002
  • The major purpose of this study is to determine the dynamic behavior of soil-pile-structure interaction system considering the underground cavity. For the analysis, a numerical method fur ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. For the verification of dynamic analysis in the frequency domain, both forced vibration analysis and free-field response analysis are performed. The behavior of soil non-linearity is considered using the equivalent linear approximation method. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis considering the underground cavity in 2D problem.

  • PDF

Distribution of Fe-Mn Ore in Ugii Nuur, Mongolia Using Magnetic Data (자력자료를 이용한 몽골 우기누르 철-망간 분포 특성)

  • Park, Gyesoon;Lee, Bum-Han;Kim, In-Joon;Heo, Chul-Ho
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.422-428
    • /
    • 2014
  • Korea Institute of Geoscience and Mineral Resources (KIGAM) and Mineral Resources Authority of Mongolia (MRAM) performed a joint survey on Ugii Nuur Fe-Mn mineralized area. Following the survey, we carried out magnetic survey and 3D magnetic susceptibility inversion. Based on the inversion results, basic feasibility study and 3D imaging of Fe-Mn mineralized area were performed using 3D geological modeling technique. Using the distribution of total magnetic field data, we were confirmed for the possibility of horizontal extension of ore bodies from surface outcrops. The 3D magnetic susceptibility model, which is highly related with Fe content, analyzed by inversion shows that the ore bodies of Deposit 1 and Deposit 2 are extended to the underground and ore bodies that are not exposed on the surface are largely distributed in the underground. If we perform the integration analysis using this magnetic susceptibility model and the ore grade data analyzed by drilling survey, it is possible to carry out the effective potential evaluation of Ugii Nuur Fe-Mn ore deposit.

Mode conversion and scattering analysis of guided waves at delaminations in laminated composite beams

  • Soleimanpour, Reza;Ng, Ching-Tai
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.213-236
    • /
    • 2015
  • The paper presents an investigation into the mode conversion and scattering characteristics of guided waves at delaminations in laminated composite beams. A three-dimensional (3D) finite element (FE) model, which is experimentally verified using data measured by 3D scanning laser vibrometer, is used in the investigation. The study consists of two parts. The first part investigates the excitability of the fundamental anti-symmetric mode ($A_0$) of guided wave in laminated composite beams. It is found that there are some unique phenomena, which do not exist for guided waves in plate structures, make the analysis become more complicated. The phenomena are observed in numerical study using 3D FE simulations. In the second part, several delaminated composite beams are studied numerically to investigate the mode conversion and scattering characteristics of the $A_0$ guided wave at delaminations. Different sizes, locations and through-thickness locations of the delaminations are investigated in detail. The mode conversion and scattering phenomena of guided waves at the delaminations are studied by calculating reflection and transmission coefficients. The results show that the sizes, locations and through-thickness locations of the delaminations have significant effects on the scattering characteristics of guided waves at the delaminations. The results of this research would provide better understanding of guided waves propagation and scattering at the delaminations in the laminated composite beams, and improve the performance of guided wave damage detection methods.

Effect of Nucleation and Growth Dynamics on Saturation Magnetization of Chemically Synthesized Fe Nanoparticles

  • Ogawa, T.;Seto, K.;Hasegawa, D.;Yang, H.T.;Kura, H.;Doi, M.;Takahashi, M.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.308-311
    • /
    • 2011
  • In order to obtain mono-dispersed Fe NPs with high saturation magnetization, quantitative analysis method to investigate the growth dynamics of the Fe NPs synthesized by a conventional thermal decomposition method has been developed. As a result, fast nucleation process promotes formation of ~4 nm of initial nucleus with a non-equilibrium phase, resulting in low saturation magnetization. And slow particle growth with atomic-scaled surface precipitation mode (< 100 atoms/($min{\cdot}nm^2$)) can form the growth layer on the surface of initial nucleus with high saturation magnetization (~190 emu/$g_{Fe}$) as an equilibrium a phase of Fe. Therefore, higher stabilization of small initial nucleus generated just after the injection of $Fe(CO)_5$ should be one of the key issues to achieve much higher $M_s$ of Fe NPs.

Effect of $CO_2$ Content on the Growth and Corrosion Characteristics of the Compound Layers in Gaseous Nitrocarburized Carbon Steels (가스 질화침탄처리한 탄소강의 화합물층 성장 및 부식특성에 미치는 $CO_2$함량의 영향)

  • Kim, Y.H.;Kim, S.D.;Yoon, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.5
    • /
    • pp.219-227
    • /
    • 2002
  • This study has been performed to investigate the effect of $CO_2$ content on the growth characteristics of the compound layer, porous layer and corrosion characteristics of carbon steels after gaseous nitrocarburizing in $70%-NH_3-CO_2-N_2$ at $580^{\circ}C$ for 2.5 hrs. The results obtained from the experiment were the thickness of the compound and porous layers increased with increasing $CO_2$ contents. At the same fixed gas composition the thickness of the compound and porous layer increased with increasing carbon content of the specimens. X-ray diffraction analysis showed that compound layer was mainly consisted of ${\varepsilon}-Fe_{2-3}(N,C)$ and ${\gamma}^{\prime}-Fe_4N$ as the increased with $CO_2$ contents in atmosphere, compound layer was chiefly consisted of ${\varepsilon}-Fe_{2-3}(N,C)$ phase. With increasing $CO_2$ content and total flow rate in gaseous nitrocarburizing, the amount of ${\varepsilon}-Fe_{2-3}(N,C)$ phase in the compound layer was increased. The current density of passivity decreased with increasing $CO_2$ content due to the development of porous layer at the out most surface of ${\varepsilon}-Fe_{2-3}(N,C)$.

Effects of Hafnium, Boron and Zirconium on the Ductility of Ni$_3$(Al, Fe) Intermetallic Compounds

  • Lim, S.H.;No, J.Y.;No, K.S.;Wee, D.M.
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.306-310
    • /
    • 1992
  • Effects of hafnium, boron and zirconium on the ductility of Ni$_3$(Al, Fe) intermetallic compounds were studied using tensile test and SIMS analysis. Ni$_3$(Al, Fe) alloy with 0.1 at.% Hf, 0.05 at.% B and 0.1 at.% Zr additions showed maximum elongations of about 30% at 300K, 10% at 300K and 14% at 473K, respectively. The fracture mode of the alloy without the additive was the mixture of intergranular and transgranular fractures, but the addition of Hf, Zr or B changed the fracture mode to transgranular only. SIMS analysis showed that the beneficial effects of Hf, Zr or B segregation on the grain boundary strength are consistent with the grain boundary cohesion theory.

  • PDF

Irradiation enduced In-plane magnetization in Fe/MgO/Fe/Co multilayers

  • Singh, Jitendra Pal;Lim, Weon Cheol;Song, Jonghan;Kim, Jaeyeoul;Asokan, K.;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.188.1-188.1
    • /
    • 2015
  • For present investigation Fe/MgO/Fe/Co multilayer stack is grown on Si substrate using e-beam evaporation in ultrahigh vacuum. This stack is irradiated perpendicularly by 120 MeV $Ag^{8+}$ at different fluences ranging from $1{\times}10^{11}$ to $1{\times}10^{13}ions/cm^2$ in high vacuum using 15UD Pelletron Accelerator at Inter University Accelerator Centre, New Delhi. Magnetic measurements carried out on pre and post irradiated stacks show significant changes in the shape of perpendicular hysteresis which is relevant with previous observation of re-orientation of magnetic moment along the direction of ion trajectory. However increase in plane squareness may be due to the modification of interface structure of stacks. X-ray reflectivity measurements show onset of interface roughness and interface mixing. X-ray diffraction measurements carried out using synchrotron radiation shows amorphous nature of MgO and Co layer in the stack. Peak corresponding body centered Fe [JCPDS-06-0696] is observed in X-ray diffraction pattern of pre and post irradiated stacks. Peak broadening shows granular nature of Fe layer. Estimated crystallite size is $22{\pm}1nm$ for pre-irradiated stack. Crystallite size first increases with irradiation then decreases. Structural quality of these stacks was further studied using transmission electron microscopic measurements. Thickness from these measurements are 54, 36, 23, 58 and 3 nm respectively for MgO, Fe, MgO, Fe+Co and Au layers in the stack. These measurements envisage poor crystallinity of different layers. Interfaces are not clear which indicate mixing at interface. With increase fluence mixing and diffusion was increased in the stack. X-ray absorption spectroscopic measurements carried out on these stacks show changes of Fe valence state after irradiation along with change of O(2p)-metal (3d) hybridized state. Valence state change predicts oxide formation at interface which causes enhanced in-plane magnetization.

  • PDF