• Title/Summary/Keyword: 2 phase motor

Search Result 615, Processing Time 0.025 seconds

Driving Characteristic Analysis of Brushless DC Motor Considering PWM Mode (PWM 모드를 고려한 브러시리스 DC 전동기의 구동 특성 해석)

  • Shin Hyun-Hun;Lee Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.98-107
    • /
    • 2005
  • Brushless DC motor(BLDCM) can be driven by 120[^{\circ}]$ square wave voltage and use PWM pulse patterns in two-phase feeding scheme to control the speed of the motor. This Paper introduces four PWM modes used BLDCM control system, and analyzes their different influences on the motor performances using a time-stepped voltage source finite element method. To verify the proposed computational method, we built the prototype motor for electrical power steering(EPS) and compared the predicted and the measured back EMF and phase current.

The Travelling Field of Two phase Linear Induction Motor (2상 Linear Induction Motor의 이동자계)

  • 이윤종;임달호
    • 전기의세계
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 1970
  • The foundation for the theoretical establishment of the linear motor lies in the investigation of the magnetic flux distribution in its airgaps. Generally speaking, the linear motor is similar, in the principle of its operation, to the general induction motor. However, there are great differences in the aspects of its structure and characteristics, especially, in the fact that the formation of its travelling magnetic field depends on the method of its winding. This paper is written in order to introduce the method of calculating the air gap magnetic flux distribution on the basis of its ampere-conductor in the case that 2 phase winding is applied on its open magnetic circuit iron core, and to present the results of investigation of the pulsation in its travelling fields. the first and second example of winding show the case of travelling magnetic field with the constant amplitude except the end region. The third example deals with the configuration of coil-side displaced outside the core and which produce the increased flux density at the ends, but, on the contrary, forms the pulsated travelling field.

  • PDF

A Study of the Pole Change Method of the Single-Phase Induction Motor for Capability Variation (능력가변을 위한 단상유도전동기의 극수변환 방법에 관한 연구)

  • Kim, Gyu-Heon;Jung, Tae-Uk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.499-505
    • /
    • 2020
  • Capacitor-run single-phase induction motor is cheaper than motors that use permanent magnets and is widely used in home appliances and industries based on relatively high durability and productivity. It can also be operated by line. However speed cannot be controlled because the line frequency is free. In this paper we dealt pole change method one of the method controlling speed of capacitor-run single-phase induction motor. The conventional pole change method is difficult to improve the power and efficiency of the motor because the composition of the pole change device is complex and do not have enough area of the windings because of windings not used according to the driving conditions. In this paper, we proposed the pole change method that is used main windings and auxiliary windings at 4 poles operation and used auxiliary windings as compensation windings at 2 poles operation. The proposed method was verified through finite element analysis.

Analysis of Squirrel Cage Effect in Single Phase LSPM

  • Kim, Byung-Taek;Kim, Young-Kwan;Kim, Duk-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.190-195
    • /
    • 2004
  • This paper presents the analysis of the effects of non-uniform slots in a line start permanent magnet (LSPM) motor. For purposes of the investigation, the simple formula of $2^{nd}$resistance for rotors having different slot areas is deduced. The characteristic analysis using the formula is performed and compared with measurement results.

The Driving Characteristics of Two-Phase Sinusoidal in Ultrasonic motor (초음파 모터의 2상 정현파 구동특성)

  • Choi, Jung-Seok;Baek, Soo-Hyun;Kim, Yong;Yoon, Shin-Yong;Choi, Chul-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.100-102
    • /
    • 2002
  • In this paper the driving characteristic for a traveling-wave type ultrasonic motor is described. For driving of ultrasonic motor, a two-phase resonant inverter and Digital IC was made. The driving circuit simulation results are compared with measured frequencis and amplitudes.

  • PDF

Rotor Position Estimation of 3-Phase PM BLDC Motor by 2Hall-IC, 1Hall-IC (2Hall-IC, 1Hall-IC를 이용한 PM BLDCM의 회전자 위치검출)

  • Lee, Byoung-Kuk;Kim, Yuen-Chung;Yoon, Yong-Ho;Kim, Hack-Seong;Won, Chung-Yuen;Chun, Jang-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.56-64
    • /
    • 2006
  • Generally, Permanent Magnet Brushless DC Motor(PM BLDC) is necessary the Hall-IC to detect the rotor position. But it will take place the operation standstill of motor or error of rotor position detection according to the circumference temperature, humidity, or limited surroundings. This paper propose the algorithm of rotor position detection only using one or two Hall-IC. Therefore we can estimate information of the others phase in sequence through a rotor instead of using three Hall-IC at 3 phase motor. This paper identify the same characteristics, performance and function of protection circuit by the proposed algorithm with the 3 phase PM BLDC motor in comparison with general method.

Inductance Calculation in a Switched Reluctance Motor using Permeance Method (퍼미언스 방법을 이용한 스위치드 릴럭턴스 전동기의 인덕턴스 산정)

  • Lee, Cheewoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1836-1842
    • /
    • 2012
  • Torque is proportional to the rate of change of inductance in a switched reluctance motor (SRM), and hence, phase inductance is an important parameter in determining the behavior of an SRM. Therefore, the accurate prediction of inductance with respect to rotor position makes a significant contribution to designing an SRM and its analytical approach is not straightforward due to nonlinear flux distribution. Although several different approaches using a finite element analysis (FEA) or curve-fitting tool have been employed to compute phase inductance [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase inductance is predicted by means of a permeance method, and the proposed approach is analytically verified in terms of the accuracy of estimated inductance compared to inductance obtained by FEA.

Flux Linkage Estimation in a Switched Reluctance Motor Using a Simple Reluctance Circuit

  • Lee, Cheewoo
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.57-64
    • /
    • 2013
  • Flux linkage of phase windings is a key parameter in determining the behavior of a switched reluctance motor (SRM) [1-8]. Therefore, the accurate prediction of flux linkage at aligned and unaligned rotor positions makes a significant contribution to the design of an SRM and its analytical approach is not straightforward due to nonlinear saturation in flux. Although several different approaches using a finite element analysis (FEA) or a curve-fitting tool have been employed to compute phase flux linkage [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase flux linkage at aligned and unaligned rotor positions is estimated by means of a reluctance network, and the proposed approach is analytically verified in terms of accuracy compared to FEA.

Phase Current Variation of Bifilar-Wound Hybrid Stepping Motor by Lead Angle Control (Lead Angle 제어에 의한 복권형 하이브리드 스테핑 전동기의 상전류 변화에 관한 연구)

  • 우광준;이종언
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.26-34
    • /
    • 1998
  • In this paper, we confirm that the instanteneous phase current of the bifilar-wound hybrid stepping motor is dependent of lead angle by the experimental results. The variation of phase current with lead angle gives informations about the rotor position at the moment when phase winding coil is excited. We show that the rotor position of the bifilar-wound hybrid stepping motor for the closed-loop drives can be detected by using the instantaneous phase current measurement. We propose an instantaneous phase current equation as the function of electrical lead angle by the modeling of the bifilar-wound hybrid stepping motor. We also analyze the relationship between instantaneous phase current and rotor position by the computer simulation results. By the experimental results, we also confirm that the information about the rotor position can be obtained from the instantaneous phase current values at the instance of $\pi/2$ electrical angle of excitation pulse. pulse.

  • PDF

A Study on 2 Phase Excitation Method of SRM Drive (SRM 드라이브의 2상여자방식에 관한 연구)

  • Moon, Jae-Won;An, Young-Ju;Ahn, Jin-Woo;Hwan, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.177-180
    • /
    • 1997
  • A new excitation method of switched reluctance moor drive is described in this paper. This motor produces reluctance torque by mutual action between tyro phases as well as conventional self reluctance torque. The change of self inductance and mutual inductance are used to produce torque. This paper suggests the operational principle, the mechanism of torque product and the driving characteristics of Switched Reluctance Motor with 2 phase excitation against conventional SRM experimentally. The energy conversion ratio is increased because the next phase is excited after one phase is already excited. Acoustic noise of SRM with 2 phase excitation is decreased than that of conventional SRM due to the mechanism of torque production.

  • PDF