• Title/Summary/Keyword: 2 phase learning

Search Result 195, Processing Time 0.022 seconds

Recognition of the Korean Character Using Phase Synchronization Neural Oscillator

  • Lee, Joon-Tark;Kwon, Yang-Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.347-353
    • /
    • 2004
  • Neural oscillator can be applied to oscillator systems such as analysis of image information, voice recognition and etc, Conventional learning algorithms(Neural Network or EBPA(Error Back Propagation Algorithm)) are not proper for oscillatory systems with the complicate input patterns because of its too much complex structure. However, these problems can be easily solved by using a synchrony characteristic of neural oscillator with PLL(phase locked loop) function and a simple Hebbian learning rule, Therefore, in this paper, it will introduce an technique for Recognition of the Korean Character using Phase Synchronization Neural Oscillator and will show the result of simulation.

High School Exploration of a Phase Change Material as a Thermal Energy Storage

  • Ardnaree, Kwanhathai;Triampo, Darapond;Yodyingyong, Supan
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.145-150
    • /
    • 2021
  • The present study describes a hands-on experiment to help students understand the concept of phase change or phase transition and its application in a phase change material (PCM). PCMs are substances that have the capability of storing and releasing large amounts of thermal energy. They act as energy storage materials that provide an effective way to save energy by reducing the electricity required for heating and cooling. Lauric acid (LA) was selected as an example of the PCM. Students investigated the temperature change of LA and the temperature (of air) inside the test tube. The differences in the temperatures of the systems helped students understand how PCMs work. A one-group pretest and posttest design was implemented with 34 grade-11 students in science and mathematics. Students' understanding was assessed using a multiple-choice test and a questionnaire. The findings revealed that the designed activity helped students understand the concept of phase change and its application to materials for thermal energy storage.

Development and Effects of a Sex Education Program with Blended Learning for University Students (대학생을 위한 블렌디드 러닝 기법의 성 교육 프로그램 개발 및 효과)

  • Kim, Il-Ok;Yeom, Gye Jeong;Kim, Mi Jeong
    • Child Health Nursing Research
    • /
    • v.24 no.4
    • /
    • pp.443-453
    • /
    • 2018
  • Purpose: This study was describes the development and implementation a sex education program with a blended learning method for university students. Methods: Sixty-eight university students were recruited either to the experimental group (n=35) or the control group (n=33). This program was developed based on the analysis, design, development, implementation, and evaluation model. The analysis phase consisted of a literature review, focus group interview, expert consultations, and target group survey. In addition, learning objectives and structure were designed, and a printed text-book, presentation slides, cross-word puzzle, and debate topics were developed. In the implementation phase, the program was conducted 3 times over the course of 3 weeks. The evaluation phase involved verification of the effects of the program on sex-related knowledge, sexual autonomy, and justification of violence, as well as an assessment of satisfaction with the program. Results: The experimental group had significantly higher scores on sex-related knowledge (t=5.47, p<.001), sexual autonomy (t=2.40, p=.019), and justification of violence (t=2.52, p=.015) than the control group. Conclusion: The results indicate that this sex education program with blended learning was effective in meeting the needs of university students and can be widely used in this context.

Conception Types of Elementary School Students about the Moon Phase Changes and the Suggestions and Effects of Teaching Methods (초등학생들의 달의 위상변화에 대한 개념 유형과 수업 방법의 제안 및 효과)

  • Son, Jun Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.2
    • /
    • pp.289-301
    • /
    • 2015
  • This study noted that elementary school students were unable to accurately comprehend the principles of moon phase changes and that teachers themselves lacked a full understanding of it as well. Therefore, this study classifies conception types through 161 5th grade respondents and suggests how to change students' conception types through the use of reconstructed teaching and learning materials (that have been developed in existing studies). It verified the changes in the learning achievement of 129 5th grade respondents and analyzed how to think about reconstructed teaching and learning materials through four teacher respondents and four 5th grade respondents from the same study. The results of this study are as follows: First, the conception types on moon phase changes were classified into C and W types. W types consisted of W1, W2, W3, W4, and W5 types. Students had difficulty in understanding the principles of a waxing crescent moon and first quarter phase changes. Second, the group taking classes, which implemented reconstructed teaching and learning materials, showed greater improvement in learning achievement posttest and long-term tests compared to those who have not. Finally, teachers and students reacted positively to the reconstructed teaching and learning materials as shown in exit survey results. In conclusion, it is suggested that teachers are better off utilizing reconstructed teaching and learning materials so that elementary school students may fully understand the principles of moon phase changes rather than just memorizing the results.

Learning a Single Joint Perception-Action Coupling: A Pilot Study

  • Ryu, Young-Uk
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.43-51
    • /
    • 2010
  • Purpose: This study examined the influence of visuomotor congruency on learning a relative phase relationship between a single joint movement and an external signal. Methods: Participants (N=5) were required to rhythmically coordinate elbow flexion-extension movements with a continuous sinusoidal wave (0.375 Hz) at a $90^{\circ}$ relative phase relationship. The congruent group was provided online feedback in which the elbow angle decreased (corresponding to elbow flexion) as the angle trajectory was movingup, and vice versa. The incongruent group was provided online feedback in which the elbow angle decreased as the angle trajectory was moving down, and vice versa. There were two practice sessions (day 1 and 2) and each session consisted of 6 trials per block (5 blocks per session). Retention tests were performed 24 hours after session 2, and only the external sinusoidal wave was provided. Repeated ANOVAs were used for statistical analysis. Results: During practice, the congruent group was significantly less variable than the incongruent group. Phase variability in the incongruent group did not significantly change across blocks, while variability decreased significantly in the congruent group. In retention, the congruent group produced the required $90^{\circ}$ relative phase pattern with significantly less phase variability than the incongruent group. Conclusions: Congruent visual feedback facilitates learning. Moreover, the deprivation of online feedback does not affect the congruent group but does affect the incongruent group in retention.

Design and Implementation of a Two-Phase Activity Recognition System Using Smartphone's Accelerometers (스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템의 설계 및 구현)

  • Kim, Jong-Hwan;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.2
    • /
    • pp.87-92
    • /
    • 2014
  • In this paper, we present a two-phase activity recognition system using smartphone's accelerometers. To consider the unique temporal pattern of accelerometer data for each activity, our system executes the decision-tree(DT) learning in the first phase, and then, in the second phase, executes the hidden Markov model(HMM) learning based on the sequences of classification results of the first phase classifier. Moreover, to build a robust recognizer for each activity, we trained our system using a large amount of data collected from different users, different positions and orientations of smartphone. Through experiments using 6720 examples collected for 6 different indoor activities, our system showed high performance based on its novel design.

Development of Syllabuses for Biological Nursing Science Subjects based on Learning Outcomes: Structure and Function of Human Body, Pathogenic Microbiology, Pathophysiology, and Mechanisms and Effects of Drugs (학습성과를 기반으로 한 기초간호학 교과목의 강의계획서 개발: 인체 구조와 기능, 병원미생물학, 병태생리학, 약물의 기전과 효과)

  • Park, Hyunju;Kim, Yun-Kyung;Kim, Joo Hyun;Jeong, Jae Sim;Choi Kwon, Smi;Hong, Hae Sook
    • Journal of Korean Biological Nursing Science
    • /
    • v.17 no.2
    • /
    • pp.188-210
    • /
    • 2015
  • Purpose: The purpose of this study was to develop syllabuses of basic nursing science subjects (Structure and Function of Human Body, Pathogenic Microbiology, Pathophysiology, and Mechanisms and Effects of Drug) based on learning outcomes. Methods: We developed a 3-phase plan to develop the syllabuses. In the first phase, The Korean Society of Biological Nursing Science (KSBNS) held a workshop in May, 2013 in which professors who are in charge of basic nursing science subjects shared opinions about learning outcomes. As a result, initial prototype syllabuses came out. In the second phase, revised syllabuses based on learning outcomes were presented and discussed in the conference held by KSBNS in November, 2013. In the last phase, a research team who taught basic nursing science subjects finalized the syllabuses during the meetings. Results: Syllabuses of 4 basic nursing science subjects were developed. Conclusion: These syllabuses of 4 subjects need to be disseminated throughout nursing colleges. Further revision needs to be made according to the circumstances and context of each school.

Feedforward Input Signal Generation for MIMO Nonminimum Phase Autonomous System Using Iterative Learning Method (반복학습에 의한 MIMO Nonminimum Phase 자율주행 System의 Feedforward 입력신호 생성에 관한 연구)

  • Kim, Kyongsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.204-210
    • /
    • 2018
  • As the 4th industrial revolution and artificial intelligence technology develop, it is expected that there will be a revolutionary changes in the security robot. However, artificial intelligence system requires enormous hardwares for tremendous computing loads, and there are many challenges that need to be addressed more technologically. This paper introduces precise tracking control technique of autonomous system that need to move repetitive paths for security purpose. The input feedforward signal is generated by using the inverse based iterative learning control theory for the 2 input 2 output nonminimum-phase system which was difficult to overcome by the conventional feedback control system. The simulation results of the input signal generation and precision tracking of given path corresponding to the repetition rate of extreme, such as bandwidth of the system, shows the efficacy of suggested techniques and possibility to be used in military security purposes.

An Analysis of Features in Self Generated Analogies during Phaseal Teaching Learning Process about Mixture Using Analogy for Lower Elementary School Students (초등학교 저학년 학생들의 단계적 비유추론 학습과정을 통한 혼합물 학습 과정에서 제시된 생성적 비유의 특징 분석)

  • Jung, Jin Kyu;Kim, Youngmin
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.4
    • /
    • pp.419-433
    • /
    • 2015
  • Analogical reasoning is a central component of human cognition and contributes to scientific discovery and to develop science education. In this study, we investigated the process features of lower elementary school students' analogical reasoning to explain mixture concept. The subjects are 24 lower elementary students. And the research design includes three phases instruction to investigate the features of students' self generated analogy. Phase 1 is the introduction of analogy in which student learn to use analogy. Phase 2 is a POE class about mixture conception. Piaget and Inhelder studied the conception of mixing among children in relation to cognitive development. In phase 2, we taught the student with Piaget and Inhelder's the experiment and observed the features of learning process about mixture conception. Phase 3 is students' generation of analogy (self generated analogy) for the experienced phenomena in phase 2. We analyzed the students' responses through the three phases in the view of Gentner's Structure Mapping Theory. The results showed that many lower elementary school students even before formal operation stage understood the mixture conception and made well their self generated analogy to explain the mixture conception in spite of the difficulty of making self generated analogy.

An Upshift Improvement in the Quality of Forklift's Automatic Transmission by Learning Control (학습제어를 이용한 지게차 자동변속기 상향 변속품질 개선)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.17-26
    • /
    • 2022
  • Recently, automatic transmissions caused a good improvement in the shift quality of a forklift. An advanced shift control algorithm, which was based on TCU firmware, was applied with embedded control technology and microcontrollers. In the clutch-to-clutch shifting, one friction element is released and the other friction element is activated. During this process, if the release and application timings are not synchronized, an overrun or tie-up occurs and ultimately leads to a shift shock. The TCU, which measures only the speed of the forklift, inevitably applies the open-loop shift control. In this situation, the speed ratio does not change during the clutch fill. The torque phase occurs until the clutch is disengaged. In this study, an offline shift logic of the learning control was proposed. It induced a synchronous shift when the learning control progressed. During this process, the reference current trajectory of the release clutch was corrected and applied to the next upshift. We considered the results of the overrun/tie-up characteristics of the upshift performed immediately before. The vehicle test proved that the deviation in shift quality, which was caused by the difference in the mechanical characteristics of the clutch, could be improved by the learning control.