• Title/Summary/Keyword: 2 dimensional image

Search Result 1,529, Processing Time 0.031 seconds

Comparative Analysis of Treatment Planning System and Dose Distribution of Gamma knife PerfexionTM using EBT-3 Film (EBT-3 필름을 사용한 감마나이프 퍼펙션TM의 치료 계획 시스템 및 선량 분포 비교 분석)

  • Jin, Seongjin;Kim, eongjin;Seo, Weonseop;Hur, Beongik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.509-515
    • /
    • 2017
  • The purpose of this study is to measure the 3 dimensional dose distribution of Gamma knife $Perfection^{TM}$, make a comparative analysis of the result and establish the measurement method for the procedures using EBT3 film. The dose distributions of the Gamma knife $Perfection^{TM}$ installed in two hospitals were evaluated in accuracy and precision. For accuracy, the difference between the mechanical center axis and the dose center axis was assessed on a 4 mm collimator. The allowed difference in accuracy is within 0.3 mm and it was measured as 0.098 mm, 0.195 mm for A hospital and 0.229 mm, and 0.223 mm for B hospital. For precision the difference between the FWHM(Full Width at Half Maximum) of Gamma Plan and measurement in the 4, 8, and 16 mm collimators was calculated. The allowed difference in precision is less than ${\pm}1mm$. The value of the hospital A was -0.283 ~ 0.583 mm, and the hospital B was -0.857 ~ 0.810 mm. When analyzing the dose distributions using the image-j program, it is necessary to establish a clearer reference point of the measurement point, and it is considered that the comparison of the dose distribution should be performed in actual treatment irradiation dose with a high dose usable film.

Analysis of Target Identification Performances Using Bistatic ISAR Images (바이스태틱 ISAR 영상을 이용한 표적식별 성능 분석)

  • Lee, Seung-Jae;Lee, Seong-Hyeon;Kang, Min-Seok;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.566-576
    • /
    • 2016
  • Inverse synthetic aperture radar(ISAR) image generated from bistatic radar(Bi-ISAR) represents two-dimensional scattering distribution of a target, and the Bi-ISAR can be used for bistatic target identification. However, Bi-ISAR has large variability in scattering mechanisms depending on bistatic configurations and do not represent exact range-Doppler information of a target due to inherent distortion. Thus, an efficient training DB construction is the most important factor in target identification using Bi-ISARs. Recently, a database construction method based on realistic flight scenarios of a target, which provides a reliable identification performance for the monostatic target identification, was applied to target identification using high resolution range profiles(HRRPs) generated from bistatic radar(Bi-HRRPs), to construct efficient training DB under bistatic configurations. Consequently, high identification performance was achieved using only small amount of training Bi-HRRPs, when the target is a considerable distance away from the bistatic radar. Thus, flight scenarios based training DB construction is applied to target identification using Bi-ISARs. Then, the capability and efficiency of the method is analyzed.

Nondestructive Diagnosis of NPP Piping System Using Ultrasonic Wave Imaging Technique Based on a Pulsed Laser Scanning System (펄스 레이저 스캐닝 기반 초음파 영상화 기술을 활용한 원전 배관 비파괴 진단)

  • Kim, Hyun-Uk;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • A noncontact nondestructive testing (NDT) method is proposed to detect the damage of pipeline structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND: YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using three dimensional Fourier transformation (3DFT). The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a pipeline structures is conducted using the damage-sensitive features. Finally, the pipes with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

Bone Segmentation Method based on Multi-Resolution using Iterative Segmentation and Registration in 3D Magnetic Resonance Image (3차원 무릎 자기공명영상 내에서 영역화와 정합 기법을 반복적으로 이용한 다중 해상도 기반의 뼈 영역화 기법)

  • Park, Sang-Hyun;Lee, Soo-Chan;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • Recently, medical equipments are developed and used for diagnosis or studies. In addition, demand of techniques which automatically deal with three dimensional medical images obtained from the medical equipments is growing. One of the techniques is automatic bone segmentation which is expected to enhance the diagnosis efficiency of osteoporosis, fracture, and other bone diseases. Although various researches have been proposed to solve it, they are unable to be used in practice since a size of the medical data is large and there are many low contrast boundaries with other tissues. In this paper, we present a fast and accurate automatic framework for bone segmentation based on multi-resolutions. On a low resolution step, a position of the bone is roughly detected using constrained branch and mincut which find the optimal template from the training set. Then, the segmentation and the registration are iteratively conducted on the multiple resolutions. To evaluate the performance of the proposed method, we make an experiment with femur and tibia from 50 test knee magnetic resonance images using 100 training set. The proposed method outperformed the constrained branch and mincut in aspect of segmentation accuracy and implementation time.

Spectroscopic Comparison of Photo-oxidation of Outside and Inside of Hair by UVB Irradiation (자외선B 조사에 의한 모발 외부와 내부의 광산화에 관한 분광학적 비교)

  • Ha, Byung-Jo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.220-225
    • /
    • 2020
  • Hair is made of proteins containing various amino acids. Ultraviolet (UV) radiation is believed to be responsible for the most damaging effects of sunlight, and also plays an important role in hair aging. The purpose of this study was to investigate the changes in morphological and chemical structures after ultraviolet B (UVB) irradiation of human hair. The UVB-irradiated hair showed characteristic morphological and structural changes, compared to those of the normal hair. The result from a scanning electron microscope (SEM) equipped with an energy dispersive X-ray diffractometer (EDX) showed that the scale of UV-irradiated hair appeared to be rough and the amount of oxygen element was higher than that of the normal hair. Fluorescence and three dimensional (3D) topographical images were obtained by a confocal laser scanning microscope (CLSM). In 3D images, the green emission intensity of normal hair was much higher than that of fluorescing UVB-irradiated hair. The intensity of green emission reflects the intrinsic fluorescence of hair protein. Also, a fluorescent imaging method using fluorescamine reagent was used to identify the free amino groups resulting from a peptide bond breakage in UVB-irradiated hair. Strong blue fluorescence of UVB-irradiated hair, which indicates a very high level of amino groups, was observed by CLSM. Therefore, the fluorescamine as an extrinsic fluorescence could provide a useful tool to identify the peptide bond breakage in UVB-irradiated hair. Infrared image mapping was also employed to assess the cross-sections of normal and UVB-irradiated specimens to examine the oxidation of disulfide bonds. The degree of peak areas with strong absorbance for the disulfide mono-oxide was spread from the outside to the inside of hair. The spectroscopic techniques used alone, or in combination, launch new possibilities in the field of hair cosmetics.

Data Processing using Anisotropic Analysis for the Long-offset Marine Seismic Data of the East Sea, Korea (동해 해역 원거리 해양탄성파 탐사자료의 이방성 분석을 이용한 전산처리)

  • Joo, Yonghwan;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • The acquisition and processing of long-offset data are essential for imaging deep geological structures in marine seismic surveys. It is challenging to derive an accurate subsurface image by employing conventional data processing to long-offset data owing to the normal moveout (NMO) stretch and non-hyperbolic moveout phenomena induced by seismic anisotropy. In 2017, the Korea Institute of Geoscience and Mineral Resources conducted a simultaneous two-dimensional multichannel streamer and ocean-bottom seismic survey using a 5.7-km streamer and an ocean-bottom seismometer to identify the deep geological structure of the Ulleung Basin. Herein, the actual geological subsurface structure was obtained via the sequential iterative updating of the velocity and anisotropic parameters of the long-offset data obtained using a multichannel streamer, and anisotropic prestack Kirchhoff migration was performed using the updated velocity and anisotropic parameters as input parameters. As a result, the reflection energy in the long-offset traces, which showed non-hyperbolic moveout owing to seismic anisotropy, was well aligned horizontally and NMO stretches were also reduced. Thus, a more precise and accurate migrated image was obtained, minimizing the distortion of reflectors and mispositioned reflection energy.

Digital Twin-based Cadastral Resurvey Performance Sharing Platform Design and Implementation (디지털트윈 기반의 지적재조사 성과공유 플랫폼 설계 및 구현)

  • Kim, IL
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.37-46
    • /
    • 2023
  • As real estate values rise, interest in cadastral resurvey is increasing. Accordingly, a cadastral resurvey project is actively underway for drone operation through securing work efficiency and improving accuracy. The need for utilization and management of cadastral resurvey results (drone images) is being raised, and through this study, a 3D spatial information platform was developed to solve the existing drone image management and utilization limitations and to provide drone image-based 3D cadastral information. It is proposed to build and use. The study area was selected as a district that completed the latest cadastral resurvey project in which the study was organized in February 2023. Afterwards, a web-based 3D platform was applied to the study to solve the user's spatial limitations, and the platform was designed and implemented based on drone images, spatial information, and attribute information. Major functions such as visualization of cadastral resurvey results based on 3D information and comparison of performance between previous cadastral maps and final cadastral maps were implemented. Through the open platform established in this study, anyone can easily utilize the cadastral resurvey results, and it is expected to utilize and share systematic cadastral resurvey results based on 3-dimensional information that reflects the actual business district. In addition, a continuous management plan was proposed by integrating the distributed results into one platform. It is expected that the usability of the 3D platform will be further improved if a platform is established for the whole country in the future and a service linked to the cadastral resurvey administrative system is established.

Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing (Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상)

  • Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

Analysis of Tidal Deflection and Ice Properties of Ross Ice Shelf, Antarctica, by using DDInSAR Imagery (DDInSAR 영상을 이용한 남극 로스 빙붕의 조위변형과 물성 분석)

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.933-944
    • /
    • 2019
  • This study analyzes the tide deformation of land boundary regions on the east (Region A) and west (Region B) sides of the Ross Ice Shelf in Antarctica using Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR). A total of seven Sentinel-1A SAR images acquired in 2015-2016 were used to estimate the accuracy of tide prediction model and Young's modulus of ice shelf. First, we compared the Ross Sea Height-based Tidal Inverse (Ross_Inv) model, which is a representative tide prediction model for the Antarctic Ross Sea, with the tide deformation of the ice shelf extracted from the DDInSAR image. The accuracy was analyzed as 3.86 cm in the east region of Ross Ice Shelf and it was confirmed that the inverse barometric pressure effect must be corrected in the tide model. However, in the east, it is confirmed that the tide model may be inaccurate because a large error occurs even after correction of the atmospheric effect. In addition, the Young's modulus of the ice was calculated on the basis of the one-dimensional elastic beam model showing the correlation between the width of the hinge zone where the tide strain occurs and the ice thickness. For this purpose, the grounding line is defined as the line where the displacement caused by the tide appears in the DDInSAR image, and the hinge line is defined as the line to have the local maximum/minimum deformation, and the hinge zone as the area between the two lines. According to the one-dimensional elastic beam model assuming a semi-infinite plane, the width of the hinge region is directly proportional to the 0.75 power of the ice thickness. The width of the hinge zone was measured in the area where the ground line and the hinge line were close to the straight line shown in DDInSAR. The linear regression analysis with the 0.75 power of BEDMAP2 ice thickness estimated the Young's modulus of 1.77±0.73 GPa in the east and west of the Ross Ice Shelf. In this way, more accurate Young's modulus can be estimated by accumulating Sentinel-1 images in the future.

Changes in Total Cerebral Blood Flow with Aging, Parenchymal Volume Changes, and Vascular Abnormalities: a Two-dimensional Phase-Contrast MRI Study (나이와 뇌실질부피 변화 및 혈관이상에 따른 총뇌혈류량 변화: 이차원 위상대조 자기공명영상을 이용한 연구)

  • Liu Haiying;Shin Tae-Beom;Youn Seong-Kuk;Oh Jong-Yong;Lee Young-Il;Choi Sun-Seob
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.17-23
    • /
    • 2004
  • Purpose : To evaluate changes in total cerebral blood flow (tCBF) with aging, parenchymal volume changes and vascular abnormalities, using 2 dimensional (D) phase-contrast magnetic resonance imaging (PC MRI). Materials and Methods : Routine brain MRI including T2 weighted image, time-of-flight (TOF) MR Angiography (MRA) and 2D PC MRI were performed in 73 individuals, including 12 volunteers. Normal subjects (12 volunteers, and 21 individuals with normal MRI and normal MRA) were classified into groups according to age (18-29, 30-49 and 50-66 years). For the group with abnormalities in brain MRIs, cerebral parenchymal volume changes were scored according to the T2 weighted images, and atherosclerotic changes were scored according to the MRA findings. Abnormal groups were classified into 4 groups: (i) mild reduction in volume, (ii) marked reduction in volume by parenchymal volume and atherosclerotic changes, and (iii) increased volume and (iv) Moya-moya disease. Volumetric flow was measured at the internal carotid artery (ICA) and vertebral artery bilaterally using the velocity-flow diagrams from PC MRI, and combined 4 vessel flows and tCBF were compared among all the groups. Results : The age-specific distribution of tCBFs in normal subjects were as follows: $12.0{\pm}2.1ml/sec$ in 18-29 years group, $11.8{\pm}1.9ml/sec$ in 30-49 years group, $10.9{\pm}2.2ml/sec$ in 50-66 years group. The distribution of tCBFs in the different subsets of the abnormal population were as follows: $9.5{\pm}2.5ml/sec$ in the group with mild reduction in volume, $7.6{\pm}2.0ml/sec$ in the group with marked reduction in volume, and $7.3{\pm}1.2ml/sec$ and $7.0{\pm}1.1ml/sec$ in the increased parenchymal volume and Moya-moya disease groups respectively. Conclusion : Total cerebral blood flow decreases with increasing age with a concomitant reduction in parenchymal volumes and increasing atherosclerotic changes. It is also reduced in the presence of increased parenchymal volume and Moya-moya disease.2D PC MRI can be used as a tool to evaluate tCBF with aging and in the presence of various conditions that can affect parenchymal volume and cerebral vasculature.

  • PDF