• Title/Summary/Keyword: 2 dimensional image

Search Result 1,529, Processing Time 0.028 seconds

Alternative Method of Retrocrural Approach during Celiac Plexus Block Using a Bent Tip Needle

  • An, Ji Won;Choi, Eun Kyeong;Park, Chol Hee;Choi, Jong Bum;Ko, Dong-Kyun;Lee, Youn-Woo
    • The Korean Journal of Pain
    • /
    • v.28 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • Background: This study sought to determine safe ranges of oblique angle, skin entry point and needle length by reviewing computed tomography (CT) scans and to evaluate the usefulness of a bent tip needle during celiac plexus block (CPB). Methods: CT scans of 60 CPB patients were reviewed. Image of the uppermost margin of L2 vertebral body was used to measure the minimal and maximal oblique angles and the distances from the midline to skin puncture point. The imaginary needle trajectory distance was calculated by three-dimensional measurement. When the procedure was performed by using a $10^{\circ}$ bent tip needle under a $20^{\circ}$ oblique X-ray fluoroscopic view, the distance (GF/G'F) from the midline to the actual puncture site was measured. Results: The imaginary safe oblique angle range was $26.4-34.2^{\circ}$ and $27.7-36.0^{\circ}$ on the right and left, respectively. The distance from the midline to skin puncture point was 6.1-7.6 cm on the right and 6.3-7.6 cm on the left. The needle trajectory distance at minimal angle was 9.6-11.6 cm on the right and 9.5-11.5 cm on the left. The distance of GF/G'F was 5.1-6.5 cm and 5.0-6.4 cm on the right and left, respectively. All imaginary parameters were correlated with BMI except for GF/G'F. All complications were mild and transient. Conclusions: We identified safe values of angles and distances using a straight needle. Furthermore, using a bent tip needle under a $20^{\circ}$ oblique fluoroscopic view, we could safely perform CPB with smaller parameter values.

The Influence of Rearfoot Motion Control through Marathon Shoes On and Off (마라톤화 착용 시 후족제어에 미치는 영향)

  • Kim, Young-Jae;Jang, Sung-Il
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.69-81
    • /
    • 2005
  • In this study using two-dimensional system of the analysis of image, when normal males in their twenties who have normal foot and step with heel first are walking and running, they who are wearing running shoes or barefoot are testing and comparing the exchange factors of heel control. There are following results of this test by verifying them with T-Test. 1) When they are running, there are two big different gap which is $6.05^{\circ}$ between barefoot and wearing the running shoes. The former is $174.79^{\circ}{\pm}6.31$ and the latter is $180.84^{\circ}{\pm}4.69$. But it is not statistically significant. The angle of first step with heel is $100.42^{\circ}{\pm}3.95$ with barefoot and $93.97^{\circ}{\pm}094$ with wearing the running shoes. In this case, it is statistically significant(p<.01) 2) When they are running, the angle of the Achilles' tendon has different gap which is $5.24^{\circ}$ between barefoot and wearing the running shoes. The former is $179.70^{\circ}{\pm}4.23$ and the latter is $184.94^{\circ}{\pm}4.09$. It is not statistically significant. The angle of minimal step with heel is $96.30^{\circ}{\pm}3.07$ with barefoot and $90.84^{\circ}{\pm}0.44$ with wearing the running shoes. In this case, it is statistically significant(p<.01). 3) In the angle of the Achilles' tendon and the angle of first step with heel, when they are walking, the angle of the Achilles' tendon has different gap which is $1.81^{\circ}$ between barefoot and wearing the running shoes. The former is $6.39^{\circ}{\pm}0.83$ and the latter is $8.20^{\circ}{\pm}1.85$. It is not statistically significant. The angle of first step with heel is $2.32^{\circ}{\pm}0.51$ with barefoot and $3.22^{\circ}{\pm}1.44$ with wearing the running shoes. It is not statistically significant. 4) In the angle of the take-off of Achilles' tendon, when they are walking, the angle of the take-off of Achilles' tendon has different gap which is $3.88^{\circ}$ between barefoot and wearing the running shoes. The former is $177.62^{\circ}{\pm}8.78$ and the latter is $173.74^{\circ}{\pm}16.31$. It is statistically significant(p<.05). Therefore, they are running, the angle of the take-off of Achilles' tendon is $178.37^{\circ}{\pm}19.28$ with barefoot and $171.26^{\circ}{\pm}12.18$ with wearing the running shoes. It is statistically significant(p<.05).

Evaluation on the Usefulness of Lung Tumor Stereotactic Radiosurgery Applying the CyberKnife $Synchrony^{TM}$ Respiratory Tracking System (사이버나이프 $Synchrony^{TM}$ 호흡 추적 장치를 이용한 폐종양 방사선수술의 유용성 평가)

  • Kim, Gha-Jung;Bae, Seok-Hwan;Choi, Jun-Gu;Chae, Hong-In
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.379-386
    • /
    • 2010
  • This study evaluated the motion of tumors during the entire period of therapy and the accuracy of radiosurgery among forty eight lung tumor patients who were underwent radiosurgery using the CyberKnife Synchrony Respiratory Tracking System. The motion of lung tumor was measured by the coordinates of a gold acupuncture needle inserted into the tumor or the area around the tumor using the CyberKnife image guided system. Then the accuracy of radiosurgery was evaluated based on the error of correlation computed with the motion tracking system. The lung tumor motion is Cranio-Caudal direction by an average of $2.63{\pm}1.87\;mm$, moved left-right direction by $1.13{\pm}0.71\;mm$, and anterior-posterior direction by $1.74{\pm}1.16\;mm$. The degree of rotational movement was $1.66{\pm}1.66^{\circ}$ on X axis, $1.20{\pm}0.97^{\circ}$ on Y axis, and $1.18{\pm}0.73^{\circ}$ on Z axis. The vector of translation movement was measured to be $3.78{\pm}2.00\;mm$ on the average. The results show that directions of Cranio-Caudal(p < 0.001), anterior-posterior direction(p < 0.029), and three dimensional vector value(p < 0.002) showed statistical significance, because the lower side of tumor showed more intensive movement compared to the upper side of tumor. The radiosurgery was carried out by compensating the motion of tumor after accurate investigation of the correlation error with the average of $0.95{\pm}0.62\;mm$ during the lung tumor radiosurgery with the CyberKnife Synchrony Respiratory Tracking System.

Gravity Field Interpretation and Underground Structure Modelling as a Method of Setting Horizontal and Vertical Zoning of a Active Fault Core (활성단층의 3차원적인 규모를 결정하기 위한 중력장 데이터의 해석 및 지각구조 모델링: 양산단층에서의 예)

  • Choi, Sungchan;Kim, Sung-Wook;Choi, Eun-Kyeong;Lee, Young-Cheol;Ha, Sangmin
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • In order to estimate the vertical and horizontal structural in the Yangsan fault core line (Naengsuri area, Pohang), we carried out gravity field measurements and interpretation procedures such as Euler deconvolution method and curvature analysis in addition to the forward modelling technique (i.e. IGMAS+). We found a prominent gravity difference of more than 1.5 mGal across the fault core. This indicates a distinct density difference between the western and eastern crustal area across the Yangsan fault line. Comparing this gravity field interpretation with other existent geologic and geophysical survey data (e.g. LiDAR, trenching, electric resistivity measurements), It is concluded that (1) the prominent gravity difference is caused by the density difference of about 0.1 g/㎤ between the Bulguksa Granite in the west and the Cretaceous Sandstone in the east side, (2) the fault core is elongated vertically into a depth of about 2,000 meters and extended horizontally 3,000 meters to the NNE direction from Naengsuri area. Our results present that the gravity field method is a very effective tool to estimate a three -dimensional image of the active fault core.

Creation of the dental virtual patients with dynamic occlusion and its application in esthetic dentistry (심미치의학 영역에서 동적 교합을 나타내는 가상 환자의 형성을 통한 전치부 보철 수복 증례)

  • An, Se-Jun;Shin, Soo-Yeon;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.222-230
    • /
    • 2022
  • Digital technology is gradually expanding its field and has a great influence on various fields of dentistry. Recently in digital dentistry, the importance of superimposing various 3-dimensional (3D) image data is emerging, in order to utilize gathered data effectively for diagnosis and prosthesis fabrication. Integrating data from facial scans, intraoral scans, and mandibular movement recordings can create a virtual patient. A virtual patient is formed by integrating digital 3D diagnostic data such as intraoral and extraoral soft tissues, residual dentition, and dynamic occlusion, and the results of prosthetic treatment can be evaluated virtually. The patients in this case report were a 37-year-old female whose chief complaint is that the appearance of the existing prosthesis was distorted and a 55-year-old female patient whose anterior prosthesis needed to be refabricated after the endodontic treatment. 3D facial scans were obtained from each patient, and the patient's mandibular movements were recorded using ARCUS Digma 2 (KaVo Dental GmbH, Biberach an der Riss, Germany). The collected data were integrated on computer-aided design (CAD) software (Exocad dental CAD; exocad GmbH, Darmstadt, Germany) and transferred to a virtual articulator to create a digital virtual patient. The temporary fixed prostheses were designed, restored, and evaluated, and it was reflected into the final restorations. With the aid of the virtual dental patient, accuracy and predictability could be increased throughout treatment, simplifying the occlusal adjustment and clinical evaluation with improved esthetic outcomes.

Reproducibility evaluation of the use of pressure conserving abdominal compressor in lung and liver volumetric modulated arc therapy (흉복부 방사선 치료 시 압력 기반 복부압박장치 적용에 따른 치료 간 재현성 평가)

  • Park, ga yeon;Kim, joo ho;Shin, hyun kyung;Kim, min soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.71-78
    • /
    • 2021
  • Purpose: To evaluate the inter-fractional position and respiratory reproducibility of lung and liver tumors using pressure conserving type(P-type) abdominal compressor in volumetric modulated arc therapy(VMAT). Materials and methods: Six lung cancer patients and three liver cancer patients who underwent VMAT using a P-type abdominal compressor were included in this study. Cone-beam computed tomography(CBCT) images were acquired before each treatment and compared with planning CT images to evaluate the inter-fractional position reproducibility. The position variation was defined as the difference of position shift values between target matching and bone matching. 4-dimensional cone-beam computed tomography(4D CBCT) images were acquired weekly before treatment and compared with planning 4DCT images to evaluate the inter-fractional respiratory reproducibility. The respiratory variation was calculated by the magnitude of excursions by breathing. Results: The mean ± standard deviation(SD) of overall position variation values, 3D vector in the three translational directions were 1.1 ± 1.4 mm and 4.5 ± 2.8 mm for the lung and liver, respectively. The mean ± SD of respiratory variation values were 0.7 ± 3.4 mm (p = 0.195) in the lung and 3.6 ± 2.6 mm (p < 0.05) in the liver. Conclusion: The use of P-type compressor in lung and liver VMAT was effective for stable control of inter-fractional position and respiratory variation by reproduction of abdominal compression. Appropriate PTV margin must be considered in treatment planning, and image guidance before each treatment are required in order to obtain more stable reproducibility

Rotation Errors of Breast Cancer on 3D-CRT in TomoDirect (토모다이렉트 3D-CRT을 이용한 유방암 환자의 회전 오차)

  • Jung, Jae Hong;Cho, Kwang Hwan;Moon, Seong Kwon;Bae, Sun Hyun;Min, Chul Kee;Kim, Eun Seog;Yeo, Seung-Gu;Choi, Jin Ho;Jung, Joo-Yong;Choe, Bo Young;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • The purpose of this study was to analyze the rotational errors of roll, pitch, and yaw in the whole breast cancer treated by the three-dimensional radiation therapy (3D-CRT) using TomoDirect (TD). Twenty-patient previously treated with TD 3D-CRT was selected. We performed a retrospective clinical analysis based on 80 images of megavoltage computed tomography (MVCT) including the systematic and random variation with patient setup errors and treatment setup margin (mm). In addition, a rotational error (degree) for each patient was analyzed using the automatic image registration. The treatment margin of X, Y, and Z directions were 4.2 mm, 6.2 mm, and 6.4 mm, respectively. The mean value of the rotational error for roll, pitch, and yaw were $0.3^{\circ}$, $0.5^{\circ}$, $0.1^{\circ}$, and all of systematic and random error was within $1.0^{\circ}$. The errors of patient positioning with the Y and Z directions have generally been mainly higher than the X direction. The percentage in treatment fractions in less than $2^{\circ}$ at roll, pitch, and yaw are 95.1%, 98.8%, and 97.5%, respectively. However, the edge of upper and lower (i.e., bottom) based on the center of therapy region (point) will quite a possibility that it is expected to twist even longer as the length of treatment region. The patient-specific characters should be considered for the accuracy and reproducibility of treatment and it is necessary to confirm periodically the rotational errors, including patient repositioning and repeating MVCT scan.

Technical Feasibility of Quantitative Measurement of Various Degrees of Small Bowel Motility Using Cine Magnetic Resonance Imaging

  • Ji Young Choi;Jihye Yun;Subin Heo;Dong Wook Kim;Sang Hyun Choi;Jiyoung Yoon;Kyuwon Kim;Kee Wook Jung;Seung-Jae Myung
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1093-1101
    • /
    • 2023
  • Objective: Cine magnetic resonance imaging (MRI) has emerged as a noninvasive method to quantitatively assess bowel motility. However, its accuracy in measuring various degrees of small bowel motility has not been extensively evaluated. We aimed to draw a quantitative small bowel motility score from cine MRI and evaluate its performance in a population with varying degrees of small bowel motility. Materials and Methods: A total of 174 participants (28.5 ± 7.6 years; 135 males) underwent a 22-second-long cine MRI sequence (2-dimensional balanced turbo-field echo; 0.5 seconds per image) approximately 5 minutes after being intravenously administered 10 mg of scopolamine-N-butyl bromide to deliberately create diverse degrees of small bowel motility. In a manually segmented area of the small bowel, motility was automatically quantified using a nonrigid registration and calculated as a quantitative motility score. The mean value (MV) of motility grades visually assessed by two radiologists was used as a reference standard. The quantitative motility score's correlation (Spearman's ρ) with the reference standard and performance (area under the receiver operating characteristics curve [AUROC], sensitivity, and specificity) for diagnosing adynamic small bowel (MV of 1) were evaluated. Results: For the MV of the quantitative motility scores at grades 1, 1.5, 2, 2.5, and 3, the mean ± standard deviation values were 0.019 ± 0.003, 0.027 ± 0.010, 0.033 ± 0.008, 0.032 ± 0.009, and 0.043 ± 0.013, respectively. There was a significant positive correlation between the quantitative motility score and the MV (ρ = 0.531, P < 0.001). The AUROC value for diagnosing a MV of 1 (i.e., adynamic small bowel) was 0.953 (95% confidence interval, 0.923-0.984). Moreover, the optimal cutoff for the quantitative motility score was 0.024, with a sensitivity of 100% (15/15) and specificity of 89.9% (143/159). Conclusion: The quantitative motility score calculated from a cine MRI enables diagnosis of an adynamic small bowel, and potentially discerns various degrees of bowel motility.

Development of an Automatic 3D Coregistration Technique of Brain PET and MR Images (뇌 PET과 MR 영상의 자동화된 3차원적 합성기법 개발)

  • Lee, Jae-Sung;Kwark, Cheol-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Park, Kwang-Suk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.414-424
    • /
    • 1998
  • Purpose: Cross-modality coregistration of positron emission tomography (PET) and magnetic resonance imaging (MR) could enhance the clinical information. In this study we propose a refined technique to improve the robustness of registration, and to implement more realistic visualization of the coregistered images. Materials and Methods: Using the sinogram of PET emission scan, we extracted the robust head boundary and used boundary-enhanced PET to coregister PET with MR. The pixels having 10% of maximum pixel value were considered as the boundary of sinogram. Boundary pixel values were exchanged with maximum value of sinogram. One hundred eighty boundary points were extracted at intervals of about 2 degree using simple threshold method from each slice of MR images. Best affined transformation between the two point sets was performed using least square fitting which should minimize the sum of Euclidean distance between the point sets. We reduced calculation time using pre-defined distance map. Finally we developed an automatic coregistration program using this boundary detection and surface matching technique. We designed a new weighted normalization technique to display the coregistered PET and MR images simultaneously. Results: Using our newly developed method, robust extraction of head boundary was possible and spatial registration was successfully performed. Mean displacement error was less than 2.0 mm. In visualization of coregistered images using weighted normalization method, structures shown in MR image could be realistically represented. Conclusion: Our refined technique could practically enhance the performance of automated three dimensional coregistration.

  • PDF

A Study on the Buyer's Decision Making Models for Introducing Intelligent Online Handmade Services (지능형 온라인 핸드메이드 서비스 도입을 위한 구매자 의사결정모형에 관한 연구)

  • Park, Jong-Won;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.119-138
    • /
    • 2016
  • Since the Industrial Revolution, which made the mass production and mass distribution of standardized goods possible, machine-made (manufactured) products have accounted for the majority of the market. However, in recent years, the phenomenon of purchasing even more expensive handmade products has become a noticeable trend as consumers have started to acknowledge the value of handmade products, such as the craftsman's commitment, belief in their quality and scarcity, and the sense of self-esteem from having them,. Consumer interest in these handmade products has shown explosive growth and has been coupled with the recent development of three-dimensional (3D) printing technologies. Etsy.com is the world's largest online handmade platform. It is no different from any other online platform; it provides an online market where buyers and sellers virtually meet to share information and transact business. However, Etsy.com is different in that shops within this platform only deal with handmade products in a variety of categories, ranging from jewelry to toys. Since its establishment in 2005, despite being limited to handmade products, Etsy.com has enjoyed rapid growth in membership, transaction volume, and revenue. Most recently in April 2015, it raised funds through an initial public offering (IPO) of more than 1.8 billion USD, which demonstrates the huge potential of online handmade platforms. After the success of Etsy.com, various types of online handmade platforms such as Handmade at Amazon, ArtFire, DaWanda, and Craft is ART have emerged and are now competing with each other, at the same time, which has increased the size of the market. According to Deloitte's 2015 holiday survey on which types of gifts the respondents plan to buy during the holiday season, about 16% of U.S. consumers chose "homemade or craft items (e.g., Etsy purchase)," which was the same rate as those for the computer game and shoes categories. This indicates that consumer interests in online handmade platforms will continue to rise in the future. However, this high interest in the market for handmade products and their platforms has not yet led to academic research. Most extant studies have only focused on machine-made products and intelligent services for them. This indicates a lack of studies on handmade products and their intelligent services on virtual platforms. Therefore, this study used signaling theory and prior research on the effects of sellers' characteristics on their performance (e.g., total sales and price premiums) in the buyer-seller relationship to identify the key influencing e-Image factors (e.g., reputation, size, information sharing, and length of relationship). Then, their impacts on the performance of shops within the online handmade platform were empirically examined; the dataset was collected from Etsy.com through the application of web harvesting technology. The results from the structural equation modeling revealed that the reputation, size, and information sharing have significant effects on the total sales, while the reputation and length of relationship influence price premiums. This study extended the online platform research into online handmade platform research by identifying key influencing e-Image factors on within-platform shop's total sales and price premiums based on signaling theory and then performed a statistical investigation. These findings are expected to be a stepping stone for future studies on intelligent online handmade services as well as handmade products themselves. Furthermore, the findings of the study provide online handmade platform operators with practical guidelines on how to implement intelligent online handmade services. They should also help shop managers build their marketing strategies in a more specific and effective manner by suggesting key influencing e-Image factors. The results of this study should contribute to the vitalization of intelligent online handmade services by providing clues on how to maximize within-platform shops' total sales and price premiums.