• Title/Summary/Keyword: 2 degrees of freedom

Search Result 413, Processing Time 0.029 seconds

Estimation of nonlinear censored simultaneous equations models : An Application of Quasi Maximum Likelihood Methods (절삭된 연립방정식 모형의 추정에 대한 몬테칼로 비교)

  • 이회경
    • The Korean Journal of Applied Statistics
    • /
    • v.4 no.1
    • /
    • pp.13-24
    • /
    • 1991
  • This paper presents a Monte Carlo evaluation of estimators for nonlinear consored simultaneous equations models. We examine the performance of the maximum likelihood estimator (MLE), the two-step quasi maximum likelihood estimator (2QMLE) proposed by Lee and Hurd (1989), and another quasi MLe using least squares at the first step (LSAE) under varying degrees of freedom and underlying distributions, Although QMLE's are not necessarily consistent, the Monte Carlo results show that the 2QMLE may be used as an alternative to MLE when MLE is not applicable in practice.

  • PDF

Effects of modelling on the earthquake response of asymmetrical multistory buildings

  • Thambiratnam, David P.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.211-225
    • /
    • 1994
  • Responses of asymmetrical multistorey buildings to earthquakes are obtained by quasi-static code approach and real time dynamic analysis, using two different structural models. In the first model, all vertical members are assumed to be restrained at the slab levels and hence their end rotations, about horizontal axes, are taken as zero. In the second model this restriction is removed and the rotation is assumed to be proportional to the lateral stiffness of the member. A simple microcomputer based procedure is used in the analyses, by both models. Numerical examples are presented where results obtained from both the models are given. Effects of modelling on the response of three buildings, each with a different type and degree of asymmetry, are studied. Results for deflections and shear forces are presented and the effects of the type of model on the response are discussed.

Workspace Optimization and Kinematic Performance Evaluation of 2-DOF Parallel Mechanisms

  • Nam Yun-Joo;Park Myeong-Kwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1614-1625
    • /
    • 2006
  • This paper presents the kinematics and workspace optimization of the two different 2-DOF (Degrees-of-Freedom) planar parallel mechanisms: one (called 2-RPR mechanism) with translational actuators and the other (called 2-RRR mechanism) with rotational ones. First of all, the inverse kinematics and Jacobian matrix for each mechanism are derived analytically. Then, the workspace including the output-space and the joint-space is systematically analyzed in order to determine the geometric parameters and the operating range of the actuators. Finally, the kinematic optimization of the mechanisms is performed in consideration of their dexterity and rigidity. It is expected that the optimization results can be effectively used as a basic material for the applications of the presented mechanisms to more industrial fields.

Simulation of Secondary Motion of Piston Assemblies (피스톤 어셈블리의 2차 운동에 관한 시뮬레이션)

  • 오병근;조남효
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.231-243
    • /
    • 2000
  • This paper describes a simulation of secondary motion of piston assemblies using PISDYN by Ricardo. Motions of the piston, pin, rod and skirt are separately calculated, by integrating equations of motion for individual components and dynamic degrees of freedom. The effects of engine speed at full load and pin offsets on the piston assembly secondary motions, forces and friction were investigated in parametric study for 4-cylinder gasoline engine. Results show that lateral displacement and friction loss of the piston increase as a function of engine speed. The lateral motion of the piston is affected by the change in pin offset. The minimum friction loss for the condition of 4800rpm WOT occurs at a pin offset of 1.6mm.

  • PDF

A Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces

  • Zhang, K.;Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.210-220
    • /
    • 2012
  • The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system states remain bounded at all times during closed-loop operation. A Lyapunov method is used to obtain the global asymptotic stability result. The unsteady aerodynamic load is considered by resourcing to the non-linear Piston Theory Aerodynamics (PTA) modified to account for the effect of the flap deflection. Simulation results demonstrate the performance of the robust control strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle oscillations.

Mechanism and Motion of New Biped Leg Machine

  • Lim, Hun-Ok;Ogura, Yu;Takanishi, Atsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1922-1927
    • /
    • 2005
  • This paper describes the mechanism of a new biped machine capable of doing human-robot cooperation work. The biped machine, WABIAN-2 is made of two seven degrees of freedom (DOF) legs, a two DOF waist and no DOF trunk. Its leg system consists of two three DOF ankles, two one DOF knees and two three DOF hips to deal with various walk motions. Its height is about 1.2[m], and its weight is 40[kg]. It is designed with large movable range as a human. Also, a knee stretch walk pattern generation for the biped machine to perform natural walk like a human is discussed in this paper. Its leg motion is compensated by using the motion of its waist. Basic knee stretch walk experiments using WABIAN-2 are conducted on the plane, and the validity of its mechanism and walk pattern generator is verified.

  • PDF

Atomistic analysis of nano/micro biosensors

  • Chen, James;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.111-121
    • /
    • 2010
  • Dynamic analysis of nano/micro bio-sensors based on a multiscale atomistic/continuum theory is introduced. We use a generalized atomistic finite element method (GAFEM) to analyze a bio-sensor which has $3{\times}N_a{\times}N_p$ degrees of freedom, where $N_p$ is the number of representative unit cells and $N_a$ is the number of atoms per unit cell. The stiffness matrix is derived from interatomic potential between pairs of atoms. This work contains two studies: (1) the resonance analysis of nano bio-sensors with different amount of target analyte and (2) the dependence of resonance frequency on finite element mesh. We also examine the Courant-Friedrichs-Lewy (CFL) condition based on the highest resonance frequency. The CFL condition is the criterion for the time step used in the dynamic analysis by GAFEM. Our studies can be utilized to predict the performance of micro/nano bio-sensors from atomistic perspective.

Exotic superconducting state under high magnetic fields: Insights from iron-based superconductor

  • Min Jae Kim;Jong Mok Ok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.1-4
    • /
    • 2023
  • Over the past decade, the exploration of high-temperature superconductivity and the discovery of a wide range of exotic superconducting states in Fe-based materials have propelled condensed matter physics research to new frontiers. These materials exhibit intriguing phenomena arising from their multiband electronic structure, strongly orbital-dependent effects, extremely small Fermi energy, electronic nematicity, and topological aspects. Among the various factors influencing their superconducting properties, high magnetic fields play a crucial role as a control knob capable of disrupting the subtle balance between the spin, charge, lattice, and orbital degrees of freedom, leading to the emergence of various exotic superconducting states. In this review, we provide an overview of the current understanding of the exotic superconducting states observed in Fe-based superconductors, with a particular focus on FeSe and Sr2VO3FeAs, under the influence of high magnetic fields.

$H_{\infty}$ control of 2-mass system using partial state feedback and resonance ratio control (부분적인 상태궤환과 공진비제어를 이용한 2관성계의 $H_{\infty}$제어)

  • Kim, Jin-Soo;Lee, Hoon-Goo;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.53-57
    • /
    • 2001
  • In the industrial motor drive system which is composed of a motor and load connected with a flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission. To solve this problem, the two degrees of freedom $H_{\infty}$ controller was designed. But it is difficult to realize that controller. In this paper, $H_{\infty}$ control of 2-mass system using partial state feedback and resonance ratio control is proposed. Proposed controller has simple structure but satisfies the attenuation of disturbances and vibrations.

  • PDF

Structural identification of gravity-type caisson structure via vibration feature analysis

  • Lee, So-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.259-281
    • /
    • 2015
  • In this study, a structural identification method is proposed to assess the integrity of gravity-type caisson structures by analyzing vibration features. To achieve the objective, the following approaches are implemented. Firstly, a simplified structural model with a few degrees-of-freedom (DOFs) is formulated to represent the gravity-type caisson structure that corresponds to the sensors' DOFs. Secondly, a structural identification algorithm based on the use of vibration characteristics of the limited DOFs is formulated to fine-tune stiffness and damping parameters of the structural model. Finally, experimental evaluation is performed on a lab-scaled gravity-type caisson structure in a 2-D wave flume. For three structural states including an undamaged reference, a water-level change case, and a foundation-damage case, their corresponding structural integrities are assessed by identifying structural parameters of the three states by fine-tuning frequency response functions, natural frequencies and damping factors.