• Title/Summary/Keyword: 2 Wheel Robot

Search Result 98, Processing Time 0.031 seconds

Modular Type Robot for Field Moving and Tree Climbing (야지 구동과 나무 등반을 위한 모듈형 로봇의 개발)

  • Lee, Min-Gu;Yoo, Sang-Jun;Park, Jong-Won;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.118-125
    • /
    • 2012
  • Based on recent advances in technology, many robots are developed and they are used in a hazardous environment such as military operation, fire, and building collapse and so on. Among them, reconnaissance robot should be able to perform various missions which people can not do. So it needs the capability of moving with hiding its position on rough terrain, overcoming obstacles, and guaranteeing its efficiency of reconnaissance. For this reason there are in progress of researching biomimetic robots. Therefore in this paper we proposed robot mechanism, two modules based on the screw and wheel mechanism which mimic snake, and the spiral climbing method was considered for overcoming the situation when moving on the trees.

Calibration of Mobile Robot with Single Wheel Powered Caster (단일 바퀴 구동 캐스터 기반 모바일 로봇의 캘리브레이션)

  • Kim, Hyoung Cheol;Park, Suhan;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.183-190
    • /
    • 2022
  • Accurate kinematic parameters of mobile robots are essential because inaccurate kinematic model produces considerable uncertainties on its odometry and control. Especially, kinematic parameters of caster type mobile robots are important due to their complex kinematic model. Despite the importance of accurate kinematic parameters for caster type mobile robots, few research dealt with the calibration of the kinematic model. Previous study proposed a calibration method that can only calibrate double-wheeled caster type mobile robot and requires direct-measuring of robot center point and distance between casters. This paper proposes a calibration method based on geometric approach that can calibrate single-wheeled caster type mobile robot with two or more casters, does not require direct-measuring, and can successfully acquire all kinematic parameters required for control and odometry. Simulation and hardware experiments conducted in this paper validates the proposed calibration method and shows its performance.

Robot Techologies in Response to Accidents in Nuclear Power Plants

  • Kim, Seungho;Jung, Kyung-Min;Kim, Chang-Hoi;Seo, Yong-Chil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.43.6-43
    • /
    • 2002
  • $\textbullet$ KAEROT/m1 with an omni-directional planetary wheel mechanism for the narrow corridor. $\textbullet$ KAEROT/m2 can pass over the ditch with specially designed four wheel of a re-configurable crawler. $\textbullet$ Stereo imaging system with master manipulator enhancing the tele-presence. $\textbullet$ Small hybrid dosimeter detecting radiation dose and dose rate simultaneously.

  • PDF

Development of a Wheel Type Locomotive Mechanism Using Micro motor for a Capsule-Type Endoscope (모터를 이용한 바퀴형 체내이동 메커니즘의 개발)

  • Lee, Young-Jae;Kim, Byung-Kyu;Lim, Young-Mo;Park, Jong-Oh;Hong, Yeh-Sun;Kim, Soo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.289-294
    • /
    • 2001
  • The two prototypes of a Wheel Type Locomotive Mechanism Using Micro motor for a Capsule-Type Endoscope are outlined and realized. Basic concept of these mechanisms is to use a rod-shaped wheel, with which these mechanisms can go over the haustral folds inside colon. The actuator of Prototype I is geared dc motor and the actuator for steering is Shape Memory Alloy. Prototype I goes through the whole area of colonoscopy training model. Prototype II can not only go forward and backward, but also be steerable with 2 geared dc motors. Prototype II goes through dead pig colon.

  • PDF

LMI-Based Fuzzy Control for Wheeled Mobile Robot (바퀴형 이동로봇의 LMI기반 퍼지 제어)

  • Choi, Hyun-Eui;Kim, Tae-Kue;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1719_1720
    • /
    • 2009
  • Wheeled mobile robot has different mobility and steerability which determined by type of wheel and it's arrangement. Generally wheeled mobile robot's dynamics are nonlinear and various control methods have studied to control the mobile robot efficiently. In this paper, a T-S fuzzy modeling of a 2-wheeled mobile robot is mand a stable LMI-based state feedback fuzzy controller is designed and applied to the position control of the mobile robot for the reference trajectory following. Also, the verification of the designed controller is done by computer simulation.

  • PDF

An Industrial Manipulator for Shipbuilding;Off-Line Programming and Open Architecture

  • Lee, Ji-Hyoung;Hong, Kyung-Tae;Oh, Seung-Min;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.397-402
    • /
    • 2005
  • In this paper, to improve the efficiency of welding and user convenience in the shipbuilding industry, a PC-based off-line programming (OLP) technique and the development of a robot transfer unit are presented. The developed OLP system is capable of not only robot motion simulations but also automatic generations of a series of robot programs. The strength of the developed OLP system lies in its flexibility in handling the changes of the welding robot's target objects. Moreover, for a precise transfer of the robot to a desired location, an auxiliary mobile platform named a robot-origin-transfer-unit (ROTU) was developed. To enhance the cornering capability of the platform in a narrow area, the developed ROTU is equipped with 2 steering wheels and 1 driving wheel. Both the OLP and the ROTU were field-tested and their performances were proven successful.

  • PDF

Off-Line Programming in the Shipbuilding Industry: Open Architecture and Semi-Automatic Approach

  • Lee Ji-Hyoung;Kim Chang-Sei;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.32-42
    • /
    • 2005
  • In this paper, to improve the efficiency of welding and user convenience in the shipbuilding industry, a PC-based off-line programming (OLP) technique and the development of a robot transfer unit are presented. The developed OLP system is capable of not only robot motion simulations but also automatic generations of a series of robot programs. The strength of the developed OLP system lies in its flexibility in handling the changes of the welding robot's target objects. Moreover, for a precise transfer of the robot to a desired location, an auxiliary mobile platform named a robot-origin-transfer-unit (ROTU) was developed. To enhance the cornering capability of the platform in a narrow area, the developed ROTU is equipped with 2 steering wheels and 1 driving wheel. Both the OLP and the ROTU were field­tested and their performances were proven successful.

System Modeling and Simulation for an In-wheel Drive Type $6{\times}6$ Vehicle (인휠드라이브 타입 $6{\times}6$ 차량 플랫폼을 위한 시스템 모델링 및 시뮬레이션)

  • Lee, Jeong-Yeob;Suh, Seung-Whan;Shon, Woong-Hee;Kim, Chang-Jun;Han, Chang-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2011
  • The skid-steering method that applied a number of mobile robot currently is extremely effective in narrow area. But it contains several problems such as its natural properties, slip, occurred by different direction between vehicle's driving and wheel's rotary. Through this paper, suitable control algorithm of $6{\times}6$ skid steering wheeled vehicle and its driving methods are proposed by analyzing the behavior $6{\times}6$ skid-steered wheeled vehicle model designed by engineering analysis strategy. To do this, based on a behavior of designed driving system, required torque and other performance of in-wheel type motor system are considered, and finally control algorithm for each wheel is proposed and simulated using this model. To test the proposed vehicle system, driver model is designed using PID closed loop system and included in the total driving control algorithm. The Performance of designed vehicle model is verified by using DYC (Direct Yaw Control) cornering mode and slip mode control to follow the steering input which are essential to evaluate the driving performance of $6{\times}6$ vehicle. Proposed modeling strategy and control method will be implemented to the real $6{\times}6$ in-wheel drive type vehicle.

Research of Usability Test on Single-Seater Rider Robot using Omni Wheel Drive (옴니 휠 드라이브를 이용한 1인승 탑승 로봇의 사용성 평가 연구)

  • Rhee, Kun-Min;Kim, Dong-Ok
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.2
    • /
    • pp.171-176
    • /
    • 2016
  • By developing rider robot using omni wheel drive, a usability test for 6 people was conducted after finding out inconvenient factors and ways of improvement. The results of this research are as follows. First, we researched inconvenient factors captured by object of experiment using a rider robot who is living in the dormitory. It showed that the disabled showing 1.6 of satisfaction degree felt more inconvenient for normal people showing 4 of satisfaction degree. It was found that the height of seats is 10 centimeters higher, which caused inconvenience for moving. Second, each of the disabled and normal people showed 2.33 and 2.62 of satisfaction degree below the average for seats, back of a seat, armrest, footrest, security belts. However, for the revised design both of them showed 3.5 of satisfaction degree over the average. Third, most people felt this robot is quite expensive and said they would purchase it if subsidized by the government. Therefore, based on inconvenient factors and ways of improvement found in this research, further study needs to be conducted so as to improve the quality of life of the disabled.

A Study on a Robot for Moving a Double-parked Car (이중 주차된 차량을 이동하기 위한 로봇에 관한 연구)

  • Kim, Min-Chan;Sung, Young Whee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.233-244
    • /
    • 2020
  • A double-parked car is the one that is parked in a crowded parking lot with its transmission gear in neutral position and its auxiliary brake released. A double-parked car can be moved by pushing it but doing so is very difficult and dangerous. In a previous study, we proposed an omni-directional mobile robot for moving a double parked car. In that study we adopted Mecanum wheels. Even though the proposed robot showed successful results, it has some drawbacks such as dependency on a load condition, complexity in control, inefficiency in power use, etc. To overcome those drawbacks, we propose a differential drive robot with ordinary two tire wheels. The proposed robot consists of two parts, one is a wheel part and the other is a body part. By selectively connecting or disconnecting those two parts with the aid of an electric brake, the proposed robot is able to have omni-directional mobility.