• Title/Summary/Keyword: 2층 누수대수층

Search Result 15, Processing Time 0.032 seconds

Parameters Estimation and Analysis for Leaky Aquifer System (누수대수층에 대한 수리상수 추정과 해석)

  • 김민환
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.123-128
    • /
    • 1998
  • Leaky aquifer (two-aquifer) system in this study consist of an upper unconfined and a lower confined aquifer with a leaky layer between them. It is assumed that water is withdrawn from the confined aquifer of the aquifer system, the upper unconfined aquifer will be affected by the leaky aquifer separating the upper and lower aquifer. In order to analyze the leaky aquifer, the determination of hydraulic parameters is needed. In this paper, hydraulic parameters are suggested by improved SM (slope-matching) method. To know variation of groundwater head in leaky aquifer systems, an numerical scheme is made using the finite difference method. To verify the numerical scheme, its solution is compared to analytical one. The solution of them agrees well in one-dimensional system at steady-state condition. And heads of groundwader are computed upper and lower aquifer in two-dimensional system.

  • PDF

An Analysis of Groundwater Flow in the Multi-aquifer System (다층-대수층 시스템의 지하수 해석)

  • 김민환;전일권;정재성
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.10-16
    • /
    • 2002
  • The multi-aquifer system separated by semipervious leaky beds was analyzed. The finite difference scheme of the Crank-Nicolson method is applied to obtain the solution for this system. The solution of this scheme was compared with the analytical solution for two-layer aquifer systems with one-dimensional steady state. The results showed a good agreement between analytical and numerical solution for two-layer aquifer systems. So, the numerical scheme can be extended to multi-aquifer system. When the pumping is tried for single or multi aquifer, the computation of the groundwater heads was possible for each aquifer in the multi-aquifer with two-dimensional system. So, it might be helpful for the effective groundwater management.

Analysis of Stream Depletion Rate by Groundwater Abstraction in Leaky Aquifer (누수대수층 지하수 양수에 따른 하천수 감소율 거동 분석)

  • Lee, Jeongwoo;Chung, Il-Moon;Kim, Nam Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1001-1008
    • /
    • 2017
  • This study was to evaluate the stream depletion rate from groundwater pumping with varying stream-well distance, aquifer transmissivity, storage coefficient, leakage coefficient, streambed hydraulic conductance using the Zlotnik and Tartakovsky analytical solution which considers a two-layer leaky aquifer-stream-well system. For the hydraulic conditions applied in this study, the streambed hydraulic conductance and the aquitard leakage coefficient were assessed to have a dominant influence on the stream depletion rate. In order to evaluate the applicability of Zlotnik and Tartakovsky analytical solution ignoring the change in the drawdown in the lower aquifer and applying the fixed head boundary condition, the solution was compared with Hunt analytical solution derived from the more practical conditions simultaneously taking into account the drawdown changes in the upper and lower aquifers. As a result, the Zlotnik and Tartakovsky analytical solution is suitable for predicting short-term effects of less than one year in the pumping period, and when the stream depletion factor (SDF) is greater than 2,500 days, or when the product of the leakage coefficient and the stream-well distance is less than 10 cm/s.

양수시험분석에 의한 제주도 화산암 대수층의 수리적 특성

  • 우윤정;함세영;정재열;이상선;장차연;박윤석;김봉상
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.292-295
    • /
    • 2003
  • 제주도 전역의 88개소에서 측정한 양수시험자료를 분석하여 투수량계수를 산출하였으며, 투수량계수계수와 비양수량의 관계식을 산출하였다. 제주도의 화산암 대수층은 대체로 투수성이 크고 대수층의 상.하부로부터 상당량의 지하수가 공급되므로 누수피압대수층이 적합한 모델로 판단된다. 투수량계수는 0.405~1038.52m$^2$/d로서 넓은 범위에 걸쳐서 분포하며 이는 제주도 화산 암의 투수성이 지역에 따라 다양하다는 것을 의미한다. 비양수량(Q/s)-투수량계수(T) 관계식은 T = 0.582(Q/s)$^{0.974}$ 로 계산되었으며, 이 관계식은 지역적으로 투수량계수 산출이 불가능할 경우에 비양수량만으로 투수량계수를 추정하는데 이용될 수 있다.

  • PDF

Evaluation of stream depletion from groundwater pumping in shallow aquifer using the Hunt's analytical solution (Hunt 해석해를 이용한 천부대수층 지하수 양수로 인한 하천수 감소 영향 분석)

  • Lee, Jeongwoo;Chung, Il Moon;Kim, Nam Won;Hong, Sung Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.923-930
    • /
    • 2016
  • This study was to evaluate the stream depletion from groundwater pumping in shallow aquifer using the Hunt's analytical solution (2009) which considers a two-layer leaky aquifer-stream system. From the total 2,187 cases of simulations with combinations of various aquifer and stream properties, the streamflow depletion rates divided by the groundwater pumping rate showed the low values when the stream depletion factor (SDF) is higher than 1,000-10,000, and was more sensitive to the aquitard hydraulic conductivity than the streambed hydraulic conductivity. The comparison of the Hunt's solution (2009) with the Hunt's solution (1999) of a single layer aquifer indicated that the maximum difference between the dimensionless stream depletions calculated by using both solutions is above 0.3, and the stream depletion is significantly affected by the hydraulic properties of the $2^{nd}$ layer as the SDF of the first layer increases. The Hunt's solution (2009) was applied to the real shallow groundwater well that is located in Chunju-Si, and the results revealed that the groundwater pumping has significant effects on streamflow in a short period of time, showing that the dimensionless stream depletion exceeds 0.8 within a few days. It was also found that the shallow groundwater pumping effects on stream depletion are highly dependent on the stream-well distance for the locations with high hydraulic diffusivity of $1^{st}$ layer and low vertical leakance between $1^{st}$ and $2^{nd}$ layers.

Evaluating Applicability of Hunt's Analytical Solution for Groundwater Pumping from a Leaky Aquifer (누수대수층 지하수 양수에 관한 Hunt 해석해의 적용성 평가)

  • Lee, Jeongwoo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.555-561
    • /
    • 2020
  • In this study, the applicability of Hunt's analytical solution for a two-layered leaky aquifer system, which was developed to estimate stream depletion due to the groundwater pumping of the upper shallow aquifer, was evaluated. The 5-year averaged stream depletions were estimated using Hunt's analytical solution for various combinations of hydraulic characteristic values such as transmissivity, storage coefficient of the two aquifers, interlayer leakage coefficient, stream-well distance, hydraulic conductivity of the streambed, and stream width. Through comparison with the numerical solution accurately simulated with a MODFLOW groundwater flow model, the analytical solution derived by regarding the stream width as a point was evaluated. It was found that the error in the stream depletion calculated by the analytical solution can be reduced to less than 0.05 when the stream-well distance is greater than the stream width or when the stream depletion factor (SDF) is more than about 3,000 days. In addition, when the streambed hydraulic conductivity is less than 1 m/d, the hydraulic diffusion coefficient of the lower aquifer layer is less than 100 ㎡/d, the hydraulic diffusion coefficient ratio of the upper and lower aquifer layers is 5 or more, and the leakage coefficient between the layers is less than 0.0004 m/d, the overall analytical solutions were overestimated compared with the numerical solutions.

Evaluation of Stream Depletion from Groundwater Pumping in Deep Aquifer Using An Analytical Model (해석적 모형을 이용한 심부대수층 지하수 양수로 인한 하천수 감소량 분석)

  • Lee, Jeongwoo;Chung, Il-Moon;Kim, Nam Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.769-777
    • /
    • 2016
  • The objective of this study was to evaluate the stream depletion from groundwater pumping in deep aquifer using the Ward and Lough's analytical solution (2011) which considers a two-layer leaky aquifer system. The calculated results for each pumping from the 110 wells beside streams showed a wide range of non-dimensional stream depletion, that is the streamflow depletion rate divided by the groundwater pumping rate, from lower than 0.1 to more than 0.9 on average for 5 years depending on the specific properties of well location. From the comparison with Hunt's solution (1999) of a single layer aquifer, the Ward and Lough's solution showed about 50% lower than the Hunt's solution due to the difference of hydraulic properties between the first and second layers as well as the lagged effect of vertical leakance. It was also found that the groundwater pumping has a minor effect on the stream depletion if the stream depletion factor (SDF) of the 1st layer is higher than about 1,000 or the SDF of the 2nd layer is higher than about 100, or the vertical leakance is smaller than $10^{-5}s^{-1}$. Furthermore, in the present study, the variations of the stream depletion were assessed according to the magnitude of unmeasured hydraulic properties such as transmissivity and storage coefficient of the 1st layer, vertical hydraulic conductivity of the 2nd layer, the streambed hydraulic conductance.

Comparative Analysis of Shallow and Deep Groundwater Pumping Effects on Stream Depletion (천부와 심부지하수 양수에 따른 하천수 감소 영향의 비교분석)

  • Lee, Jeongwoo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.383-391
    • /
    • 2020
  • In this study, Hunt's analytical solution and Ward & Lough's analytical solution for two-layered leaky aquifer system were used to estimate stream depletions due to shallow and deep groundwater pumping, and their differences were compared. Depending on the combination of the separation distance between the stream and the well, the transmissivity and the storage coefficient of the aquifer, and the leakage coefficient between the upper and lower layers, the stream depletion, which is the amount of stream water reduction compared to the amount of groundwater pumping, for each of 45,000 cases was calculated for both shallow and deep groundwater pumping, and the differences were analyzed quantitatively. When the leakage coefficient was very small, with a value of 10-61/d, the difference in the average five-year stream depletion due to the pumping of shallow and deep groundwater showed a large deviation of up to 0.9 depending on the given hydraulic characteristics; this value exponentially decreased as the stream depletion factor (SDF) increased. This exponential relationship gradually weakened as the leakage coefficient increased due to interaction effects between layers, resulting in a small difference of up to 0.2 when the leakage coefficient reached 10-31/d. Under the condition of greater interlayer hydraulic connectivity, there was little influence of the depth of groundwater pumping on the stream water reduction.

Computing Hydraulic Parameters of Fractured Aquifers Using Fractal Model of Groundwater Flow with Leakage (누수를 포함하는 지하수 유동의 프락탈 모델 적용에 의한 균열 암반 대수층의 수리상수 산출)

  • 함세영;임정웅
    • The Journal of Engineering Geology
    • /
    • v.4 no.2
    • /
    • pp.219-229
    • /
    • 1994
  • Since groundwater flow in fractured rocks is controlled by the distribution of fractures irregu1arly developed in space, it is not possible to understand the hydraulic characteristics of fractured aquifers using Theis equation which is applicable only to homogeneous isotropic confined aquifer. This study deals with the theoretical background of the fractal groundwater flow model with leakage, the methodology of calculation of the hydraulic parameters, and the application of the developed model to field data. From the result of the application of the fractal model to two field data in Hongcheon and Yusung areas, we obtained a good match between theoretical curves and observed curves, with the same hydraulic parameters at the pumping well and the observation well. In the two pumping test analyses, we have determined 1.9 of the fractal dimension. This means that the dimension of groundwater flow at these two sites is slightly smaller than radial flow.

  • PDF

균열암반에서의 양수시험자료 해석과 일반화 방사상 유동모델의 적용성 연구

  • 성현정;김용제;우남칠;이철우;김구영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.493-496
    • /
    • 2003
  • 이 연구는 우리나라 균열암반 대수층의 수리적 특성을 해석ㆍ평가하기 위하여 양수시험 해석해(Theis, 1935; Cooper-Jacob, 1946; Papadopulos-Cooper, 1967; Hantush, 1962a,b; Moench, 1985; Hantush-Jacob, 1955) 및 일반화 방사상 유동 모델을 이용하여 균열암반 대수층(화강암, 화산암, 변성암, 백악기퇴적암, 제3기 퇴적암에 굴착된 100개 조사공)에서 수행되어진 양수시험으로부터 얻은 122개의 양수시험자료(수위강하 자료)를 분석하였다. AQTESOLV 전산프로그램을 이용한 양수시험자료 분석에 의하면, 122개 자료중 86개(71%)의 자료들이 이 연구에 사용된 해석해와 일치하며, 양수시험자료 해석해 중에 누수(leaky) 및 경계조건(boundary condition)을 고려한 해석해들이 53개(43%)로 가장 많이 나타났다. 그러므로, 양수시험자료의 해석은 균열암반 대수층의 수리지질학적 특성에 적합한 개념모델의 설정이 중요하다. 일반화 방사상 유동(GRF)모델을 적용해보면, 122개의 자료중 77개(63%)의 자료들이 Barker(1988)의 표준곡선에 의한 차원(1.1차원-2.9차원)을 보여준다. 이중 44.2%에 해당하는 39개 자료가 1.1차원과 1.9차원 사이의 분할 유동차원을 보여주는 반면에 26개(6.5%)만이 Theis 이론에 맞는 2차원의 방사상 흐름을 보여주며, 38개(49.3%)는 2.1차원에서 2.9차원에 속한다. 따라서 우리나라 균열암반 대수층에서 지하수 유동은 대부분 분할차원의 유동을 보여주는 것으로 평가된다.

  • PDF