• Title/Summary/Keyword: 2층 난류 모델

Search Result 51, Processing Time 0.024 seconds

Analysis of Turbulent Flows with Wall Transpiration (벽면을 통한 유체유동을 수반한 난류유동장 해석)

  • 유근종;서영수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.20-35
    • /
    • 1998
  • Characteristics of turbulent flow with wall transpiration is analyzed. The wall transpiration includes both of suction and injection and extends their range to 0~160 of absolute magnitude of Re$_{w}$ . Reynolds number based on inlet velocity also covers wide range of 3${\times}$$10^3$~8${\times}$$10^4$. The turbulent flow with wall transpiration induces change of wall boundary layer and rapid change of turbulent field. This, in turn, leads the change of whole flow field. For predicting this complicated flow field properly, newly modified $\kappa$-$\varepsilon$ model is utilized, which is formed by modifying dissipation rate equation. The modified $\kappa$-$\varepsilon$ model of Chien is also adopted for the comparison of model performance. Analysis shows the newly modified $\kappa$-$\varepsilon$ model is successfully able to reflect the characteristics of turbulent flow field with wall transpiration.ion.

  • PDF

Investigation on the Turbulence Structure of Reattaching Separated Shear Layer Past a Two-Dimensional Vetrical Fenc(I) (2次元 垂直壁을 지니는 再附着 剝離 斷層 의 亂流構造 에 관한 硏究 (I))

  • 김경천;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 1985
  • Hot-wire measurements of second and third-order mean products of velocity fluctuations have been made in the separated, reattached, and redeveloping boundary layer behind a vertical fence. Mean velocity, wall static pressure distributions have also been measured in the whole flow field. Upstream of the reattachment point, the separated shear layer developes as a free mixing layer, but the gradient of the maximum slope thickness, turbulent intensities and the Reynolds shear stress are higher than that of the mixing layer due to initial streamline curvature and the effects of highly turbulent recirculating flow region. In the reattachment region, Reynolds shear stress and triple products near the surface is far more rapid than the decrease of the shear stress; that is the presence of the solid wall has a marked effect on the apparent gradient diffusivity of intensity or shear stress and throws doubts upon the usefulness of the simple gradient diffusivity model in this region.

EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRATIFICATION (열성층 해석 난류모델 평가)

  • Cho, Seok-Ki;Kim, Se-Yun;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.12-17
    • /
    • 2005
  • A computational study of evaluation of current turbulence models is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor. The turbulence models tested in the present study are the two-layer model, the shear stress transport (SST) model, the v2-f model and the elliptic blending mode(EBM). The performances of the turbulence models are evaluated by applying them to the thermal stratification experiment conducted at JNC (Japan Nuclear Corporation). The algebraic flux model is used for treating the turbulent heat flux for the two-layer model and the SST model, and there exist little differences between the two turbulence models in predicting the temporal variation of temperature. The v2-f model and the elliptic blending model better predict the steep gradient of temperature at the interface of thermal stratification, and the v2-f model and elliptic blending model predict properly the oscillation of the ensemble-averaged temperature. In general the overall performance of the elliptic blending model is better than the v2-f model in the prediction of the amplitude and frequency of the temperature oscillation.

A Two-layer Model for the Effect of Cold Water Formation on the East Korean Warm Current (냉수형성이 동한난류에 미치는 영향에 대한 2층 모델)

  • SEUNG Young-Ho;NAM Soo-Yong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.1
    • /
    • pp.65-72
    • /
    • 1992
  • It is believed that the lower cold water is formed by winter cooling in the north of the East(Japan) Sea. To examine its effect on the general circulation of the East Sea, we performed a two-layer numerical model with realistic bottom topography. First a circulation is generated by imposing only an inflow and an outflow which is then modified by adding the cooling effect in the north. The interface between the two layers rises due to cooling and propagates along the coast as internal Kelvin waves. About 7 months after the cooling starts, all coastal areas of the basin have higher elevation than that in offshore region. This induces baroclinic currents resulting in clockwise(anticlockwise) circulation in upper (lower) layer of the basin. It is concluded that the East Korean Warm Current strengthens as a result of lower cold water formation.

  • PDF

Numerical Study of Unsteady Supersonic Flow over Tandem Cavities (초음속 비정상 직열배치공동 유동에 관한 수치적 연구)

  • Song, Byeong Ho;Park, Nam Eun;Kim, Jae Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.10-16
    • /
    • 2003
  • The unsteady supersonic flow over tandem cavities has been analyzed by the integration of Navier-Stokes equations with the k-$\varepsilon$ turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. The upwind TVD scheme based on the flux vector split with the van Leer limiters is used. The results show the principal frequency is very reasonable. The principal frequency of the rear cavity due to the front cavity has been analyzed by the combination of the several aspect ratios of cavities. In the case of the front cavity of low aspect ratio, the frequencies of tandem cavities are almost same, because two shear layers developed from each cavity are mixed and developed to one shear layer. However, in the case of the front cavity of high aspect ratio, the characteristis of frequency are very different, because the second shear layer is developed in the diffused first shear layer.

A Modelling of Structural Excitation Forces Due to Wall Pressure Fluctuations in a Turbulent Boundary Layer (난류 경계층 내 벽면 변동 압력의 구조 기진력 모델링)

  • 홍진숙;신구균;김상윤
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.226-233
    • /
    • 2001
  • It is essential to analyze structural vibrations due to turbulent wall pressure fluctuations over a body surface which moves through a fluid, because the vibrations can be a severe source of noise affecting to passengers in airplanes and SONAR performance. Generally, this kind of problems have been solved for very simplified models, e.g. plates, which can be applied to the wavenumber domain analysis. In this paper, a finite element modeling of the walt pressure fluctuations is investigated, which can be applied to those over arbitrary smooth surfaces. It is found that the modeled wall pressure fluctuation at nodes becomes uncorrelated at higher frequencies and at lower flow speeds, and the response is over-estimated due to the aliased power. Then the frequency range available for uncorrelated loading model and two power correction schemes are presented.

  • PDF

Implementation of Roughness-Induced Turbulent Transition Model on Inflight Icing Code (표면 조도를 고려한 난류 천이 모델의 항공기 결빙 해석자에 대한 적용 연구)

  • Min, Seungin;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • In this study, the effect of surface roughness distribution and its influence on the inflight icing code was investigated. Previous numerical studies focused on the magnitude of surface roughness, and the effects were only addressed in terms of changes in thermal boundary layers with fully turbulent assumption. In addition, the empirical formula was used to take account the turbulent transition due to surface roughness, which was regarded as reducing the accuracy of ice shape prediction. Therefore, in this study, the turbulent transition model based on the two-equation turbulence model was applied to consider the effects of surface roughness. In order to consider the effect of surface roughness, the transport equation for roughness amplification parameter was applied, and the surface roughness distribution model was implemented to consider the physical properties. For validation, the surface roughness, convective heat transfer coefficient, and ice shape were compared with experimental results and other numerical methodology. As a result, it was confirmed that the excessive prediction of the heat transfer coefficient at the leading edge and the ice horn shape at the bottom of the airfoil were improved accordingly.

Evaluation of Surface Wind Forecast over the Gangwon Province using the Mesoscale WRF Model (중규모 수치모델 WRF를 이용한 강원 지방 하층 풍속 예측 평가)

  • Seo, Beom-Keun;Byon, Jae-Young;Lim, Yoon-Jin;Choi, Byoung-Choel
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.158-170
    • /
    • 2015
  • This study evaluates the wind speed forecast near the surface layer using the Weather Research Forecasting with Large Eddy Simulation (WRF-LES) model in order to compare the planetary boundary layer (PBL) parameterization with the LES model in terms of different spatial resolution. A numerical simulation is conducted with 1-km and 333-m horizontal resolution over the Gangwon Province including complex mountains and coastal region. The numerical experiments with 1-km and 333-m horizontal resolution employ PBL parameterization and LES, respectively. The wind speed forecast in mountainous region shows a better forecast performance in 333-m experiment than in 1-km, while wind speed in coastal region is similar to the observation in 1-km spatial resolution experiment. Therefore, LES experiment, which directly simulates the turbulence process near the surface layer, contributes to more accurate forecast of surface wind speed in mountainous regions.

A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing (유동함수를 이용한 난류제트혼합유동 계산에 관한 연구)

  • Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • A simple but efficient grid generation technique by using the modified compressible form of stream function has been formulated. Transformation of a physical plane to a streamline plane, the Von Mises Transformation, has been widely used to solve the differential equations governing flow phenomena, however, limitation arises in low velocity region of boundary layer, mixing layer and wake region where the relatively large grid spacing is inevitable. Modified Von Mises Transformation with simple mathematical adjustment for the stream function is suggested and applied to solve the confined coaxial turbulent jet mixing with simple $\kappa-\epsilon$ turbulence model. Comparison with several experimental data of axial mean velocity, turbulent kinetic energy, and Reynolds shear stress distribution shows quite good agreement in the mixing layer except in the centerline where the turbulent kinetic energy distributions were somewhat under estimated. This formulation is strongly suggested to be utilized specially for free turbulent mixing layers in axisymmetric flow conditions such as the investigation of mixing behavior, jet noise production and reduction for Turbofan engines.

A Study on the Effect of Mid Layer on Supersonic 2D Double Shear Layer (초음속 2차원 2단 혼합층에서 중간층의 역할)

  • Kim, Dongmin;Baek, Seungwook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • The basic flow configuration is composed of a plane, double shear layer where relatively thin mid gas layer is sandwiched between air and fuel stream. The present study describes numerical investigations concerning the combustion enhancement according to a variation of mid layer thickness. In this case, the effect of heat release in turbulent mixing layers is important. For the numerical solution, a fully conservative unsteady $2^{nd}$ order time accurate sub-iteration method and $2^{nd}$ order TVD scheme are used with the finite volume method including k-${\omega}$ SST model. The results consists of three categories; single shear layer consists of fuel and air, inert gas sandwiched between fuel and air, cold fuel gas sandwiched between fuel and air. The numerical calculations has been carried out in case of 1, 2, 4 mm of mid layer thickness. The height of total gas stream is 4 cm. The combustion region is broadened in case of inert gas layer of 2, 4 mm thickness and cold fuel layer of 4 mm thickness compared with single shear layer.