• Title/Summary/Keyword: 2차원 전기비저항탐사

Search Result 105, Processing Time 0.027 seconds

Structural-Health Evaluation for Core Zones of Fill Dams in Korea using Electrical Resistivity Survey and No Water Boring Method (전기비저항 탐사와 무수보링을 이용한 국내 필 댐 코어존의 건전성 평가)

  • Lee, Sangjong;Lim, Heuidae;Park, Dongsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.21-35
    • /
    • 2015
  • Electrical resistivity survey (2D and 3D) were employed for detection of possible weak zone of core zones of three central core earth-rockfill dams in Korea. In the 2D results, the core zones is lower resistivity zone with less than $50{\sim}400ohm{\cdot}m$, and the basement is relatively higher resistivity zone with over $1,000ohm{\cdot}m$. In the 3D results, especially, the weak zone with under $100ohm{\cdot}m$ was detected spatial distribution area in the dam. We also drilled boreholes to collect soil samples of core zones of each dam. Water was not used during boring, because water for rotary wash boring could cause structural damages in earth dams. We found that the soil samples of core zones from all of the boreholes correspond to CL (USCS), but we also found that the fluidized or water-saturated soil samples were found in lower resistivity zones. Therefore, the electrical resistivity survey and drilling method without water are a quick and efficient method for structural-health evaluation which is detection of possible weak zones in earth core rockfill dams.

A Study on the Modified Electrode Arrays in Two-Dimensional Resistivity Survey (2차원 전기비저항 탐사를 위한 변형된 전극배열법에 관한 연구)

  • Kim Jung-Ho;Yi Myeong-Jong;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.59-69
    • /
    • 2001
  • Five kinds of modified electrode arrays were proposed to overcome the weak points of the commonly used arrays using dipole and/or pole in two-dimensional resistivity surveys. The modified pole-pole array was suggested to overcome the inefficiency caused by distant earthing in pole-pole array. Four kinds of modified arrays using dipole were designed to enhance the signal-to-noise ratio of the conventional dipole-dipole and pole-dipole arrays through boosting up the measured potential difference. In the numerical experiments using the two-dimensional modeling and inversion, the effects of the ambient electrical noise and the resolving power were examined and the results showed the validity of the modified arrays proposed in this study.

  • PDF

Effectiveness of the Electrode Arrays for Delineating 2-D Subsurface Structure (2차원 지하구조 규명을 위한 전극배열의 효율성)

  • Yoon, Jong-Ryeol;Lee, Kiehwa
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.345-355
    • /
    • 1996
  • The effectiveness of various electrode configurations in horizontal mappings and 1-D inversions of vertical sounding data for delineating 2-D structures was studied. Apparent resistivity values of three point, dipole-dipole, Wenner, and Schlumberger mappings were simulated for such structures as vertical dyke, tabular prism, buried vertical fault, ramp and complex structure by finite difference method (FDM) and they were compared with each other. Also 2-D cross sections for three structures obtained by interpolation of 1-D inverted sounding data in terms of three layers were compared for Schlumberger and Wenner arrays. On these cross sections, horizontal and vertical resistivity interfaces of the 2-D structures are revealed relatively clearly. Apparent resistivity curves of Schlumberger mapping show vertical resistivity discontinuities very well. On the whole, Schlumberger array is superior to the other arrays in electric sounding as well as mapping. This study clearly indicates that interpretations of 2-D structures based on 1-D inversion are possible.

  • PDF

Dipole-Dipole Array Geoelectric Survey for Gracture Zone Detection (전기비저항 탐사법을 이용한 지하 천부 파쇄대 조사)

  • Kim, Geon Yeong;Lee, Jeong Mo;Jang, Tae U
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.217-224
    • /
    • 1999
  • Although faults can be found by geological surveys, the surface traces of faults are not easily discovered by traditional geological surveys due to alluvia. In and around faults and fracture zones, the electrical resistivity appears to be lower than that of the surroundings due to the content of groundwater and clay minerals. Therefore, electrical resistivity surveys are effective to search buried faults and fracture zones. The dipole-dipole array electrical resistivity surveys, which could show the two dimensional subsurface electrical resistivity structure, were carried out in two areas, Yongdang-ri, Woongsang-eup, Yangsan-si, Kyungsangnam-do and Malbang-ri, Woedong-eup, Kyungju-si, Kyungsangpook-do. The one was next to the Dongrae Fault and the other near the Ulsan Fault was close to the region in which debatable quaternary fault traces had been found recently. From each measured data set, the electrical resistivity cross-section was obtained using the inversion program the reliability of which was analyzed using analytic solutions. A low resistivity zone was found in the inverted cross-section from the Yongdang-ri area survey data, and two low resistivity zones were found in that from the Malbang-ri area survey data. They were almost vertical and were 15∼20 m wide. Accounting the shape and the very low resistivity values of those zones (<100 Ωm)in the inverted section, they were interpreted as fracture zones although they should be proven by trenching. The reliability of the interpretation might be improved by adding some more parallel resistivity survey lines and interpreting the results in 3 and/or adding other geophysical survey.

  • PDF

Spectral Inversion of Time-domain Induced Polarization Data (시간영역 유도분극 자료의 Cole-Cole 역산)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.171-179
    • /
    • 2021
  • We outline a process for estimating Cole-Cole parameters from time-domain induced polarization (IP) data. The IP transients are all inverted to 2D Cole-Cole earth models that include resistivity, chargeability, relaxation time, and the frequency exponent. Our inversion algorithm consists of two stages. We first convert the measured voltage decay curves into time series of current-on time apparent resistivity to circumvent the negative chargeability problem. As a first step, a 4D inversion recovers the resistivity model at each time channel that increases monotonically with time. The desired intrinsic Cole-Cole parameters are then recovered by inverting the resistivity time series of each inversion block. In the second step, the Cole-Cole parameters can be estimated readily by setting the initial model close to the true value through a grid search method. Finally, through inversion procedures applied to synthetic data sets, we demonstrate that our algorithm can image the Cole-Cole earth models effectively.

Electrical Resistivity Response Due to the Variation of Embankment Shape and Reservoir Level (제체형태와 수위에 따른 전기비저항 반응 연구)

  • Oh, Seok-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.214-220
    • /
    • 2008
  • The distortion effect of electrical response for two-dimensional (2-D) DC resistivity method was verified in terms of 2-D inversion result of synthetic data obtained by three-dimensional (3-D) modeling, which is frequently applied to assess the safety of center core-type fill dam structure. The distortion effect is due to 2-D interpretation for 3-D structure. By the modeling analysis, we found that the water level is correctly described in the resistivity section around the middle part rather than each end side of the embankment due to the 3-D terrain effect, when the material of the embankment is assumed as horizontally uniform. And when we set the slope of outer rock fill part as uniform. the sharper the slope of the center core is, the more similar the resistivity section reflects. On the other hand, when the slope of the rock fill is steep, the resistivity section shows the water level at lower position than the real one, and the 3-D distortion effect at the end side of the embankment was enhanced.

Investigation of fault in the Kyungju Kaekok-ri area by 2-D Electrical Resistivity Survey (2차원 전기비저항 탐사를 이용한 경주 개곡리 지역의 단층조사)

  • Lee, Chi-Seop;Kim, Hee-Joon;Kong, Young-Sae;Lee, Jung-Mo;Chang, Tae-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.124-132
    • /
    • 2001
  • Electrical resistivity survey has been conducted for delineating geological fault structure in Kaekok-ri near Kyungju. In general, electrical resistivity survey has an advantage of searching buried faults and its traces compared with other geophysical survey methods. Distribution of electrical conductivity in the ground is influenced by the ratio of pores, groundwater and clay minerals. These properties are evidenced indirectly to explain for weathering condition, faults and fracture Bones. Thus the electrical resistivity survey can be an effective method to find buried faults. We have carried out two dimensional (2-D) interpretation by means of smoothness-constrained least-squares and finite element method. Field data used in this paper was acquired at Kaekok-ri, Wuedong-eup, Kyungju-si, where is Ulsan Fault and is close to the region in which debatable quaternary fault traces were found recently. The dipole-dipole array resistivity survey which could show the 2-D subsurface electrical resistivity structure, was carried out in the area with three lines. The results showed good property of fault, fracture zone and fault traces which we estimated were congruous with the results. Through this study, 2-D electrical resistivity survey interpretation for fault is useful to apply.

  • PDF

Feasibility of 3D Dipole-Dipole Electrical Resistivity Method to a Vein-Type Ore Deposit (국내 맥상광체조사를 위한 3차원 쌍극자-쌍극자 전기비저항 탐사의 적용성 분석)

  • Min, Dong-Joo;Jung, Hyun-Key;Lee, Hyo-Sun;Park, Sam-Gyu;Lee, Ho-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.268-277
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore deposit survey in literature. Geophysical surveys have been applied to the investigation of both metallic and non-metallic ore deposit. For metallic ore-deposit survey, the 2D electrical resistivity method has been popularly used, because metallic mineral deposits are generally more conductive than surrounding media. However, geological structures are 3D rather than 2D structures, which may lead to misinterpretation in 2D inversion section. In this study, 3D effects are examined for several 3D structures such as a width-varying dyke model and a wedge-shaped model. We also investigate the effects of the direction of survey line. Numerical results show that the width-varying dyke model yields some low resistivity zone in the deep part, which is independent of real ore-body location. For the wedge-shaped model, even though the survey line is located apart from the ore body, the 2D inversion section still shows low resistivity zone in the deep part. When the survey line is not perpendicular to the strike of the ore body, the low resistivity zone is slightly broader but shallower than that obtained along the survey line perpendicular to the strike. For the survey lines that have an angle smaller than $45^{\circ}$ with the strike of the ore body, the inversion results are totally distorted. From these results, we conclude that 2-D survey and interpretation can lead to misinterpretation of subsurface structures, which may be linked to economical loss. Eventually, we recommend to apply 3-D rather than 2-D electrical resistivity survey for ore-deposit survey.

Electrical Resistivity Methods in Korea (한국의 전기비저항탐사)

  • Kim, Hee-Joon
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.473-483
    • /
    • 2006
  • Although application of electrical methods in Korea began with observation of self potentials before World War II, the methods were developed slowly by the beginning of 1980's when a major burst of development activity took place. DC resistivity methods are applied in Korea more to geotechnical problems rather than to environmental ones unlike other developed countries. As with every other branch of technology, the evolving speed of the silicon chip and of streaming data to hard disk has revolutionized data collection and noise reduction processing. The last two decades saw major advances in data collection, processing, and interpretation of electrical data. Development of smooth-model two-dimensional (2D) resistivity inversion is one of the most visible changes to geophysical interpretation of the last 40 years and is now routinely applied to apparent resistivity data. The ability to represent resistivities in section rather than pseudosection view has revolutionized interpretation. Although calculation of sensitivities for general electromagnetic problems require numerous forward modelings, DC resistivity methods can enjoy computational efficiencies if sources and receivers occupy the same position, and previously intractable 3D inversion is now becoming available.

3-D Inversion of 3-D Synthetic DC Resistivity Data for Vein-type Ore Deposits (국내 맥상광체조사를 위한 3차원 전기비저항 모델링자료의 3차원 역산 해석)

  • Lee, Ho-Yong;Jung, Hyun-Key;Jeong, Woo-Don;Kwak, Na-Eun;Lee, Hyo-Sun;Min, Dong-Joo
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.699-708
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore-deposit survey in literature. Based on the fact that mineralized zone are generally more conductive than surrounding media, electrical resistivity survey among several geophysical surveys has been applied to investigate metallic ore deposits. Most of them are grounded on 2-D survey. However, 2-D inversion may lead to some misinterpretation for 3-D geological structures. In this study, we investigate the feasibility of the 3-D electrical resistivity survey to 3-D vein-type ore deposits. We first simulate 2-D dipole-dipole survey data for survey lines normal to the strike and 3-D pole-pole survey data, and then perform 3-D inversion. For 3-D ore-body structures, we assume a width-varying dyke, a wedge-shaped, and a fault model. The 3-D inversion results are compared to 2-D inversion results. By comparing 3-D inversion results for 2-D dipole-dipole survey data to 3-D inversion results for 3-D pole-pole survey data, we could note that the 2-D dipole-dipole survey data yield better inversion results than the 3-D pole-pole data, which is due to the main characteristic of the pole-pole array. From these results, we are convinced that if we have certain information on the direction of the strike, it would be desirable to apply 2-D dipole-diple survey for the survey lines normal to the strike. However, in most cases, we do not have any information on the direction of the strike, because we already developed the ore deposit with the outcrops and the remaining ore deposits are buried under the surface. In that case, performing 3-D pole-pole electrical resistivity survey would be a reasonable choice to obtain more accurate interpretation on ore body structure in spite of low resolution of pole-pole array.