• Title/Summary/Keyword: 2차원 계산

Search Result 2,112, Processing Time 0.024 seconds

Parallel Flood Inundation Analysis using MPI Technique (MPI 기법을 이용한 병렬 홍수침수해석)

  • Park, Jae Hong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1051-1060
    • /
    • 2014
  • This study is attempted to realize an improved computation performance by combining the MPI (Message Passing Interface) Technique, a standard model of the parallel programming in the distributed memory environment, with the DHM(Diffusion Hydrodynamic Model), a inundation analysis model. With parallelizing inundation model, it compared with the existing calculation method about the results of applications to complicate and required long computing time problems. In addition, it attempted to prove the capability to estimate inundation extent, depth and speed-up computing time due to the flooding in protected lowlands and to validate the applicability of the parallel model to the actual flooding analysis by simulating based on various inundation scenarios. To verify the model developed in this study, it was applied to a hypothetical two-dimensional protected land and a real flooding case, and then actually verified the applicability of this model. As a result of this application, this model shows that the improvement effectiveness of calculation time is better up to the maximum of about 41% to 48% in using multi cores than a single core based on the same accuracy. The flood analysis model using the parallel technique in this study can be used for calculating flooding water depth, flooding areas, propagation speed of flooding waves, etc. with a shorter runtime with applying multi cores, and is expected to be actually used for promptly predicting real time flood forecasting and for drawing flood risk maps etc.

Two-Dimensional Resistivity Modeling by Finite Element Method (유한요소법에 의한 2차원 비저항 모델링)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.19 no.4
    • /
    • pp.283-292
    • /
    • 1986
  • Finite element method with linear triangular and bilinear rectangular elements is applied to solve the three-dimensional potential distribution due to a point source of current located in or on the surface of the earth containing arbitrary two-dimensional resistivity distribution. The modeling technique developed in this paper is flexible to model conductive inhomogeneity and surface topographies, and more accurate to evaluate surface potentials than the conventional techniques using finite difference method. Since it is possible to reduce nodal points with acceptable accuracy, this modeling technique is very efficient and economic in terms of execution time and core space. A few geologic structures adequate to demonstrate above features are simulated in this paper.

  • PDF

Simplified Depth Modeling in HEVC-based 3D Video Coding (HEVC-기반 3차원 비디오 부호화에서 깊이 모델링 간소화 방법)

  • Song, Yunseok;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.28-32
    • /
    • 2013
  • In this paper, we present a method to reduce complexity of depth modeling modes (DMM) that are used in the current 3D-HEVC standardization. DMM adds four modes to the existing HEVC intra prediction modes for accurate object edge representation in the depth map. Especially, Mode 3 requires distortion calculation of numerous pre-defined wedgelets, inducing high complexity. The proposed method employs absolute differences of neighboring pixels in the sides of the reference block to find high intensity changing positions. Based on such positions, the number of wedgelet candidates is reduced to six and distortion calculation is skipped for irrelevant wedgelets. Experimental results show complexity reduction by 3.1% on average, while maintaining similar coding performance.

  • PDF

Node Activation Technique for Finite Element Model : Ⅱ. Computation (유한요소 모델의 절점 활성화 기법 : Ⅱ. 계산)

  • Kim, Do Nyeon;Kim, Seung Jo;Ji, Yeong Beom;Jo, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.35-43
    • /
    • 2003
  • In this paper, an efficient computational algorithm for the implementation of the newly proposed node activation technique is presented, and its computational aspects are thoroughly investigated. To verify the validity, convergence, and efficiency of the node activation technique, various numerical examples are worked out including the problems of Poisson equation, 2D elasticity problems, and 3D elasticity problems. From the numerical tests, it is verified that one can arbitrarily activate and handle the nodal points of interest in finite element model with very little loss of the numerical accuracy.

A Design of the Wideband Microstrip Patch Antenna Using Three-dimensional Transition (3차원 트랜지션을 이용한 광대역 마이크로스트립 패치 안테나의 설계)

  • 정창권;강치운;윤서용;이봉석;김우수;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.305-311
    • /
    • 1999
  • In this paper, it is designed a new type single layer patch antenna which is printed on a very thin film and separated from the ground-plane by foam with a low permitivity of 1.06 and a high thickness of around quarter wavelength. It allows the use of three-dimensional transition, from one level to another, so that its bandwidth can be enhanced by wideband impedance matching. The radiation pattern, return loss, and VSWR of the antenna are calculated using "IE3D" simulation package, and compared with the experimental results. Experimental results show that the bandwidth is about 65% of center frequency 6.8 GHz, return loss and VSWR are in a fairly good agreement with the calculations.culations.

  • PDF

A numerical simulation of flow around an impulsively translating two dimensional circular cylinder using the diffusion vortex method (순간적으로 병진운동하는 2차원 원형실린더 주위 유동장의 확산와류방법 연구)

  • Seo, Ho-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.9-15
    • /
    • 2004
  • In this study the development of the two dimensional flowfield around an impulsively translated circular cylinder is numerically simulated using the diffusion vortex method. A detailed streamline pattern of fore wake and main wake of Re=1200, 9500 flowfields are investigated. The results of streamline pattern, the size of main wake and the axial velocities along the rear symmetry axis of the circular cylinder show good agreement with the reported experimental results. The long term wake delvelopment for Re=1200 flowfield was calculated up to ${\tau}=50$. The vortex shedding frequency shows the similar value as that of reported.

A Study on the Effect of Turbine Nozzle with Fillet on Performance Characteristics of a Gas Turbine Engine (터빈 노즐의 Fillet 설치에 따른 가스터빈 엔진의 성능 특성에 관한 연구)

  • Kim, Jae-Min;Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.542-545
    • /
    • 2009
  • In this study, the effect of turbine geometry on the overall performance of a gas turbine was investigated by computational fluid dynamics. Overall engine performance was predicted through a full engine simulation program which can predict the interactions of the compressor, the combustor and the turbine. The compressor and the turbine analysis code solves 2D and 3D Navier-Stokes equations respectively. The chemical equilibrium code was applied to simulate the combustor. The computations were performed for two different shapes of turbine nozzle. The nozzle shapes adopted a baseline blade and a blade with fillet.

  • PDF

A Study of EM Wave Penetration and Scattering of Open Cylindrical Cavity (2차원 Open Cylindrical Cavity의 전자파 투과 및 산란특성연구)

  • Kim, Young-Joo;Cho, Young-Ki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.11
    • /
    • pp.55-62
    • /
    • 2001
  • Field penetration and scattering characteristics of two dimensional open cylindrical cavity is studied. Exact analysis for this sort of structure is not achieved even if there are unusual phenomena of field penetration and scattering with cavity and aperture size. In this paper, we calculate a wide range of open cavity characteristics by using of FMM method, which is extended method of MOM. We find external mode of open cylindrical cavity corresponding to internal mode of closed cavity. The characteristics of resonance and scattering of this region is different compare with non resonant area. The result of study will apply to the EM wave shielding and RCS control.

  • PDF

별을 이용한 저궤도 광학 위성의 탑재체 영상 품질 측정 지표 및 자세 기동 연구

  • Yu, Ji-Ung;Im, Dong-Uk;Park, Sang-Yeong;Son, Yeong-Jong;Lee, Dong-Han
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.29.1-29.1
    • /
    • 2009
  • 이 연구는 별 관측을 통해 점 퍼짐 함수(PSF)를 측정하고 나이퀴스트 주파수에서 변조 전달 함수(MTF)을 계산하여 주파수 영역에서 저궤도 광학 위성의 영상품질 평가방법을 도출하였다. 가상 별 영상을 생성하고 IRAF로 2차원의 점 퍼짐 함수를 얻었고 MATLAB으로 점 퍼짐 함수를 2차원 푸리에 변환하여 변조 전달함수를 계산하였다. 공간 영역에서는 점 퍼짐 함수의 모양을 통해서도 영상품질을 검증할 수 있다. Along/Across-Track의 모양이 일치하고 중심에서 좌우대칭이며 델타함수에 가까울수록 좋은 품질의 영상을 의미한다. Along/Across-Track의 점 퍼짐 함수 모양차이는 Line Rate나 Time Delay and Integration(TDI)의 오차에서 기인한다. 별을 점광원으로 본다면 점 퍼짐 함수를 정의하기 쉽고 Along/Across 방향을 동시에 측정 가능하다는 장점이 있다. 궤도상에서 별을 관측하는 것은 지상을 관측하는 것보다 대기 환경의 효과가 크지 않기 때문에 영상 품질 평가에 유리하다. Yaw Steering이나 Nadir Pointing과 같은 자세제어의 효과를 배제할 수 있으므로 자세제어의 효과가 상당 부분 제거된 영상품질을 분석할 수 있다. 지상관측시간이나 배터리 충전시간이 아닌 지구 본영에서 별을 관측하므로 임무에 방해받지 않는다. 지상관측과 같은 효과를 내고 TDI를 사용하는 환경을 구현하기위해 Line Rate를 고려한 자세 기동 방법에 대해 연구하였다. 큰 각도의 자세 기동이 예상되어 쿼터니안을 이용하여 Inertial Pointing하도록 자세 제어하였고, 자세 Slew Rate 구속조건 하에서 제어가 필요하다.

  • PDF

On the Improved Numerical Method for Hydrodynamic Forces Acting on an Arbitrary Cylinder in the Time Domain (2차원 주상체의 강제 동요시 동유체력의 시간 영역 해석법에 관하여)

  • Y.S.,Shin;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.63-72
    • /
    • 1990
  • The linear hydrodynamic forces, acting on a forced oscillating cylinder from its mean position on a free surface with a small amplitude, are calculated in the time domain. The integral equation method using a time dependent Green function is employed. The numerical results for the heaving and swaying circular cylinder are shown and give good agreements with others Furthermore it is shown that the use of the Green function, which is expressed by a series expansion or asymptotic expansion according to time range, reduces computing time greatly.

  • PDF