• Title/Summary/Keyword: 2진탐사

Search Result 146, Processing Time 0.02 seconds

Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea (서울 지역 지상 NO2 농도 공간 분포 분석을 위한 회귀 모델 및 기계학습 기법 비교)

  • Kang, Eunjin;Yoo, Cheolhee;Shin, Yeji;Cho, Dongjin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1739-1756
    • /
    • 2021
  • Atmospheric nitrogen dioxide (NO2) is mainly caused by anthropogenic emissions. It contributes to the formation of secondary pollutants and ozone through chemical reactions, and adversely affects human health. Although ground stations to monitor NO2 concentrations in real time are operated in Korea, they have a limitation that it is difficult to analyze the spatial distribution of NO2 concentrations, especially over the areas with no stations. Therefore, this study conducted a comparative experiment of spatial interpolation of NO2 concentrations based on two linear-regression methods(i.e., multi linear regression (MLR), and regression kriging (RK)), and two machine learning approaches (i.e., random forest (RF), and support vector regression (SVR)) for the year of 2020. Four approaches were compared using leave-one-out-cross validation (LOOCV). The daily LOOCV results showed that MLR, RK, and SVR produced the average daily index of agreement (IOA) of 0.57, which was higher than that of RF (0.50). The average daily normalized root mean square error of RK was 0.9483%, which was slightly lower than those of the other models. MLR, RK and SVR showed similar seasonal distribution patterns, and the dynamic range of the resultant NO2 concentrations from these three models was similar while that from RF was relatively small. The multivariate linear regression approaches are expected to be a promising method for spatial interpolation of ground-level NO2 concentrations and other parameters in urban areas.

Net Primary Production Changes over Korea and Climate Factors (위성영상으로 분석한 장기간 남한지역 순 일차생산량 변화: 기후인자의 영향)

  • Hong, Ji-Youn;Shim, Chang-Sub;Lee, Moung-Jin;Baek, Gyoung-Hye;Song, Won-Kyong;Jeon, Seong-Woo;Park, Yong-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.467-480
    • /
    • 2011
  • Spatial and temporal variabilities of NPP(Net Primary Production) retrieved from two satellite instruments, AVHRR(Advanced Very High Resolution Radiometer, 1981-2000) and MODIS(MODerate-resolution Imaging Spectroradiometer, 2000-2006), were investigated. The range of mean NPP from A VHRR and MODIS were estimated to be 894-1068 $g{\cdot}C/m^2$/yr and 610-694.90 $g{\cdot}C/m^2$/yr, respectively. The discrepancy of NPP between the two instruments is about 325 $g{\cdot}C/m^2$/yr, and MODIS product is generally closer to the ground measurement than AVHRR despite the limitation in direct comparison such as spatial resolution and vegetation classification. The higher NPP values over South Korea are related to the regions with higher biomass (e.g., mountains) and higher annual temperature. The interannual NPP trends from the two satellite products were computed, and both mean annual trends show continuous NPP increase; 2.14 $g{\cdot}C/m^2$/yr from AVHRR(1981-2000) and 6.08 $g{\cdot}C/m^2$/yr from MODIS (2000-2006) over South Korea. Specifically, the higher increasing trends over the Southwestern region are likely due to the increasing productivity of crop fields from sufficient irrigation and fertilizer use. The retrieved NPP shows a closer relationship between monthly temperature and precipitation, which results in maximum correlation during summer monsoons. The difference in the detection wavelength and model schemes during the retrieval can make a significant difference in the satellite products, and a better accuracy in the meterological and land use data and modeling applications will be necessary to improve the satellite-based NPP data.

Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output (정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측)

  • Lee, Juhyun;Yoo, Cheolhee;Im, Jungho;Shin, Yeji;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1037-1051
    • /
    • 2020
  • The accurate monitoring and forecasting of the intensity of tropical cyclones (TCs) are able to effectively reduce the overall costs of disaster management. In this study, we proposed a multi-task learning (MTL) based deep learning model for real-time TC intensity estimation and forecasting with the lead time of 6-12 hours following the event, based on the fusion of geostationary satellite images and numerical forecast model output. A total of 142 TCs which developed in the Northwest Pacific from 2011 to 2016 were used in this study. The Communications system, the Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) data were used to extract the images of typhoons, and the Climate Forecast System version 2 (CFSv2) provided by the National Center of Environmental Prediction (NCEP) was employed to extract air and ocean forecasting data. This study suggested two schemes with different input variables to the MTL models. Scheme 1 used only satellite-based input data while scheme 2 used both satellite images and numerical forecast modeling. As a result of real-time TC intensity estimation, Both schemes exhibited similar performance. For TC intensity forecasting with the lead time of 6 and 12 hours, scheme 2 improved the performance by 13% and 16%, respectively, in terms of the root mean squared error (RMSE) when compared to scheme 1. Relative root mean squared errors(rRMSE) for most intensity levels were lessthan 30%. The lower mean absolute error (MAE) and RMSE were found for the lower intensity levels of TCs. In the test results of the typhoon HALONG in 2014, scheme 1 tended to overestimate the intensity by about 20 kts at the early development stage. Scheme 2 slightly reduced the error, resulting in an overestimation by about 5 kts. The MTL models reduced the computational cost about 300% when compared to the single-tasking model, which suggested the feasibility of the rapid production of TC intensity forecasts.

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

Comparative analysis of water surface spectral characteristics based on hyperspectral images for chlorophyll-a estimation in Namyang estuarine reservoir and Baekje weir (남양호와 백제보의 Chlorophyll-a 산정을 위한 초분광 영상기반 수체분광특성 비교 분석)

  • Jang, Wonjin;Kim, Jinuk;Kim, Jinhwi;Nam, Guisook;Kang, Euetae;Park, Yongeun;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.91-101
    • /
    • 2023
  • In this study, we estimated the concentration of chlorophyll-a (Chl-a) using hyperspectral water surface reflectance in an inland weir (Baekjae weir) and estuarine reservoir (Namyang Reservoir) for monitoring the occurrence of algae in freshwater in South Korea. The hyperspectral reflectance was measured by aircraft in Baekjae Weir (BJW) from 2016 to 2017, and a drone in Namyang Reservoir (NYR) from 2020 to 2021. The 30 reflectance bands (BJW: 400-530, 620-680, 710-730, 760-790 nm, NYR: 400-430, 655-680, 740-800 nm) that were highly related to Chl-a concentration were selected using permutation importance. Artificial neural network based Chl-a estimation model was developed using the selected reflectance in both water bodies. And the performance of the model was evaluated with the coefficient of determination (R2), the root mean square error (RMSE), and the mean absolute error (MAE). The performance evaluation results of the Chl-a estimation model for each watershed was R2: 0.63, 0.82, RMSE: 9.67, 6.99, and MAE: 11.25, 8.48, respectively. The developed Chl-a model of this study may be used as foundation tool for the optimal management of freshwater algal blooms in the future.

The KALION Automated Aerosol Type Classification and Mass Concentration Calculation Algorithm (한반도 에어로졸 라이다 네트워크(KALION)의 에어로졸 유형 구분 및 질량 농도 산출 알고리즘)

  • Yeo, Huidong;Kim, Sang-Woo;Lee, Chulkyu;Kim, Dukhyeon;Kim, Byung-Gon;Kim, Sewon;Nam, Hyoung-Gu;Noh, Young Min;Park, Soojin;Park, Chan Bong;Seo, Kwangsuk;Choi, Jin-Young;Lee, Myong-In;Lee, Eun hye
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.119-131
    • /
    • 2016
  • Descriptions are provided of the automated aerosol-type classification and mass concentration calculation algorithm for real-time data processing and aerosol products in Korea Aerosol Lidar Observation Network (KALION, http://www.kalion.kr). The KALION algorithm provides aerosol-cloud classification and three aerosol types (clean continental, dust, and polluted continental/urban pollution aerosols). It also generates vertically resolved distributions of aerosol extinction coefficient and mass concentration. An extinction-to-backscatter ratio (lidar ratio) of 63.31 sr and aerosol mass extinction efficiency of $3.36m^2g^{-1}$ ($1.39m^2g^{-1}$ for dust), determined from co-located sky radiometer and $PM_{10}$ mass concentration measurements in Seoul from June 2006 to December 2015, are deployed in the algorithm. To assess the robustness of the algorithm, we investigate the pollution and dust events in Seoul on 28-30 March, 2015. The aerosol-type identification, especially for dust particles, is agreed with the official Asian dust report by Korean Meteorological Administration. The lidar-derived mass concentrations also well match with $PM_{10}$ mass concentrations. Mean bias difference between $PM_{10}$ and lidar-derived mass concentrations estimated from June 2006 to December 2015 in Seoul is about $3{\mu}g\;m^{-3}$. Lidar ratio and aerosol mass extinction efficiency for each aerosol types will be developed and implemented into the KALION algorithm. More products, such as ice and water-droplet cloud discrimination, cloud base height, and boundary layer height will be produced by the KALION algorithm.

A Study on the Production Well Spacing Design Considering Coalbed Depth in Coalbed Methane Reservoirs (석탄층 메탄가스 저류층에서 탄층 심도를 고려한 생산정 간격 설계 연구)

  • Chayoung Song;Dongjin Lee;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.98-107
    • /
    • 2023
  • This study presents a well spacing design for coalbed methane(CBM) reservoirs using the experimental results of methane gas adsorption measurement of coal samples obtained from North Kalimantan Island, Indonesia. The gas productivity analysis shows that the cumulative gas production increases as the Langmuir volume increases. This indicates that the maximum gas adsorption directly affects the gas production. In addition, the maximum gas production increases with the increase of reservoir permeability, and the dewatering period is shortened. In particular, the cumulative gas production increases as the production influence area increases. However, when comparing productivity per unit well, the maximum cumulative gas production is found between 2,000 ft of depth and 80-160 acres of the influence area. When reservoir depth and production influence area are considered simultaneously, the results of the appropriate well depth and spacing calculations show that gas productivity is highest between 600-2,000 ft. In this case, it is appropriate to design well spacing in the range of 80-160 acres. Therefore, well spacing design considering coalbed depth in undeveloped CBM reservoirs can be accomplished using gas sorption test results from coal samples.

Detection of Surface Changes by the 6th North Korea Nuclear Test Using High-resolution Satellite Imagery (고해상도 위성영상을 활용한 북한 6차 핵실험 이후 지표변화 관측)

  • Lee, Won-Jin;Sun, Jongsun;Jung, Hyung-Sup;Park, Sun-Cheon;Lee, Duk Kee;Oh, Kwan-Young
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1479-1488
    • /
    • 2018
  • On September 3rd 2017, strong artificial seismic signals from North Korea were detected in KMA (Korea Meteorological Administration) seismic network. The location of the epicenter was estimated to be Punggye-ri nuclear test site and it was the most powerful to date. The event was not studied well due to accessibility and geodetic measurements. Therefore, we used remote sensing data to analyze surface changes around Mt. Mantap area. First of all, we tried to detect surface deformation using InSAR method with Advanced Land Observation Satellite-2 (ALOS-2). Even though ALOS-2 data used L-band long wavelength, it was not working well for this particular case because of decorrelation on interferogram. The main reason would be large deformation near the Mt. Mantap area. To overcome this limitation of decorrelation, we applied offset tracking method to measure deformation. However, this method is affected by window kernel size. So we applied various window sizes from 32 to 224 in 16 steps. We could retrieve 2D surface deformation of about 3 m in maximum in the west side of Mt. Mantap. Second, we used Pleiadas-A/B high resolution satellite optical images which were acquired before and after the 6th nuclear test. We detected widespread surface damage around the top of Mt. Mantap such as landslide and suspected collapse area. This phenomenon may be caused by a very strong underground nuclear explosion test. High-resolution satellite images could be used to analyze non-accessible area.

A Study on the Improvement of Sub-divided Land Cover Map Classification System - Based on the Land Cover Map by Ministry of Environment - (세분류 토지피복지도 분류체계 개선방안 연구 - 환경부 토지피복지도를 중심으로 -)

  • Oh, Kwan-Young;Lee, Moung-Jin;No, Woo-Young
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.105-118
    • /
    • 2016
  • The purpose of this study is to improve the classification system of sub-divided land cover map among the land cover maps provided by the Ministry of Environment. To accomplish the purpose, first, the overseas country land cover map classification items were examined in priority. Second, the area ratio of each item established by applying the previous sub-divided classification system was analyzed. Third, the survey on the improvement of classification system targeting the users (experts and general public) who actually used the sub-divided land cover map was carried out. Fourth, a new classification system which improved the previous system by reclassifying 41 classification items into 33 items was finally established. Fifth, the established land cover classification items were applied on study area, and the land cover classification result according to the improvement method was compared with the previous classification system. Ilsan area in Goyang city where there are diverse geographic features with various land surface characteristics such as the urbanization area and agricultural land were distributed evenly were selected as the study area. The basic images used in this study were 0.25 m aerial ortho-photographs captured by the National Geographic Information Institute (NGII), and digital topographic map, detailed stock map plan, land registration map and administrative area map were used as the relevant reference data. As a result of applying the improved classification system into the study area, the area of culture-sports, leisure facilities was $1.84km^2$ which was approximately more than twice larger in comparison to the previous classification system. Other areas such as transportation and communication system and educational administration facilities were not classified. The result of this study has meaningful significance that it reflects the efficiency for the establishment and renewal of sub-divided land cover map in the future and actual users' needs.

Intercomparison of Daegwallyeong Cloud Physics Observation System (CPOS) Products and the Visibility Calculation by the FSSP Size Distribution during 2006-2008 (대관령 구름물리관측시스템 산출물 평가 및 FSSP를 이용한 시정환산 시험연구)

  • Yang, Ha-Young;Jeong, Jin-Yim;Chang, Ki-Ho;Cha, Joo-Wan;Jung, Jae-Won;Kim, Yoo-Chul;Lee, Myoung-Joo;Bae, Jin-Young;Kang, Sun-Young;Kim, Kum-Lan;Choi, Young-Jean;Choi, Chee-Young
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.65-73
    • /
    • 2010
  • To observe and analyze the characteristics of cloud and precipitation properties, the Cloud physics Observation System (CPOS) has been operated from December 2003 at Daegwallyeong ($37.4^{\circ}N$, $128.4^{\circ}E$, 842 m) in the Taebaek Mountains. The major instruments of CPOS are follows: Forward Scattering Spectrometer Probe (FSSP), Optical Particle Counter (OPC), Visibility Sensor (VS), PARSIVEL disdrometer, Microwave Radiometer (MWR), and Micro Rain Radar (MRR). The former four instruments (FSSP, OPC, visibility sensor, and PARSIVEL) are for the observation and analysis of characteristics of the ground cloud (fog) and precipitation, and the others are for the vertical cloud characteristics (http://weamod.metri.re.kr) in real time. For verification of CPOS products, the comparison between the instrumental products has been conducted: the qualitative size distributions of FSSP and OPC during the hygroscopic seeding experiments, the precipitable water vapors of MWR and radiosonde, and the rainfall rates of the PARSIVEL(or MRR) and rain gauge. Most of comparisons show a good agreement with the correlation coefficient more than 0.7. These reliable CPOS products will be useful for the cloud-related studies such as the cloud-aerosol indirect effect or cloud seeding. The visibility value is derived from the droplet size distribution of FSSP. The derived FSSP visibility shows the constant overestimation by 1.7 to 1.9 times compared with the values of two visibility sensors (SVS (Sentry Visibility Sensor) and PWD22 (Present Weather Detect 22)). We believe this bias is come from the limitation of the droplet size range ($2{\sim}47\;{\mu}m$) measured by FSSP. Further studies are needed after introducing new instruments with other ranges.