• Title/Summary/Keyword: 2온도 모델

Search Result 1,548, Processing Time 0.047 seconds

Predictive Growth Model of Native Isolated Listeria monocytogenes on raw pork as a Function of Temperature and Time (온도와 시간을 주요 변수로 한 냉장 돈육에서의 native isolated Listeria monocytogenes에 대한 성장예측모델)

  • Hong, Chong-Hae;Sim, Woo-Chang;Chun, Seok-Jo;Kim, Young-Su;Oh, Deog-Hwan;Ha, Sang-Do;Choi, Weon-Sang;Bahk, Gyung-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.850-855
    • /
    • 2005
  • Model was developed to predict the growth of Listeria monocytogenes in raw pork. Experiment condition for model development was full 5-by-7 factorial arrangements of temperature (0, 5, 10, 15, and $20^{\circ}C$) and time (0, 1, 2, 3, 18, 48, and 120 hr). Gompertz values A, C, B, and M, and growth kinetics, exponential growth rate (EGR), generation time (GT), lag phase duration (LPD), and maximum population density (MPD) were calculated based on growth increased data. GT and LPD values gradually decreased, whereas EGR value gradually increased with increasing temperature. Response surface analysis (RSA) was carried out using Gompertz B and M values, to formulate equation with temperature being main control factor. This equation was applied to Gompertz equation. Experimental and predictive values for GT, LPD, and EGR, compared using the model, showed no significant differences (p<0.01). Proposed model could be used to predict growth of microorganisms for exposure assessment of MRA, thereby allowing more informed decision-making on potential regulatory actions of microorganisms in raw pork.

Estimation of Brittle Fracture Behavior of SA508 Carbon Steel by Considering Temperature Dependence of Damage Model (손상모델의 온도의존성을 고려한 SA508 탄소강의 취성파괴 평가)

  • Choi, Shin-Beom;Jeong, Jae-Uk;Choi, Jae-Boong;Chang, Yoon-Suk;Ko, Han-Ok;Kim, Min-Chul;Lee, Bong-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.513-521
    • /
    • 2012
  • The aim of this study was to determine the brittle fracture behavior of reactor pressure vessel steel by considering the temperature dependence of a damage model. A multi-island genetic algorithm was linked to a Weibull stress model, which is the model typically used for brittle fracture evaluation, to improve the calibration procedure. The improved calibration procedure and fracture toughness test data for SA508 carbon steel at the temperatures $-60^{\circ}C$, $-80^{\circ}C$, and $-100^{\circ}C$ were used to decide the damage parameters required for the brittle fracture evaluation. The model was found to show temperature dependence, similar to the case of NUREG/CR-6930. Finally, on the basis of the quantification of the difference between 2- and 3-parameter Weibull stress models, an engineering equation that can help obtain more realistic fracture behavior by using the simpler 2-parameter Weibull stress model was proposed.

Intercomparison of Satellite Data with Model Reanalyses on Lower- Stratospheric Temperature (하부 성층권 온도에 대한 위성자료와 모델 재분석들과의 비교)

  • Yoo, Jung-Moon;Kim, Jin-Nam
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.137-158
    • /
    • 2000
  • The correlation and Empirical Orthogonal Function (EOF) analyses over the globe have been applied to intercompare lower-stratospheric (${\sim}$70hPa) temperature obtained from satellite data and two model reanalyses. The data is the19 years (1980-98) Microwave Sounding Unit (MSU) channel 4 (Ch4) brightness temperature, and the reanalyses are GCM (NCEP, 1980-97; GEOS, 1981-94) outputs. In MSU monthly climatological anomaly, the temperature substantially decreases by ${\sim}$21k in winter over southern polar regions, and its annual cycle over tropics is weak. In October the temperature and total ozone over the area south of Australia remarkably increase together. High correlations (r${\ge}$0.95) between MSU and reanalyses occur in most global areas, but they are lower (r${\sim}$O.75) over the 20-3ON latitudes, northern America and southern Andes mountains. The first mode of MSU and reanalyses for monthly-mean Ch4 temperature shows annual cycle, and the lower-stratospheric warming due to volcanic eruptions. The analyses near the Korean peninsula show that lower-stratospheric temperature, out of phase with that for troposphere, increases in winter and decreases in summer. In the first mode for anomaly over the tropical Pacific, MSU and reanalyses indicate lower-stratospheric warming due to volcanic eruptions. In the second mode MSU and GEOS present Quasi-Biennial Oscillation (QBO) while NCEP, El Ni${\tilde{n}}$o. Volcanic eruption and QBO have more impact on lower-stratospheric thermal state than El Ni${\tilde{n}}$o. The EOF over the tropical Atlantic is similar to that over the Pacific, except a negligible effect of El Ni${\tilde{n}}$o. This study suggests that intercomparison of satellite data with model reanalyses may estimate relative accuracy of both data.

  • PDF

Uniformity of Temperature in Cold Storage Using CFD Simulation (CFD 시뮬레이션을 이용한 농산물 저온저장고내의 온도분포 균일화 연구)

  • Jeong, Hoon;Kwon, Jin-Kyung;Yun, Hong-Sun;Lee, Won-Ok;Kim, Young-Keun;Lee, Hyun-Dong
    • Food Science and Preservation
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • To maintain the storage quality of agricultural products, temperature uniformity during cold storage, which is affected by fan flow rate and product arrangement, is important. We simulated and validated a CFD (Computational Fluid Dynamics) model that can predict both airflow and temperature distribution in a cold storage environment. Computations were based on a commercial code (FLUENT 6.2) and two turbulence models. The standard k-$\varepsilon$ model and the Reynolds stress model (RSM) were chosen to improve the accuracy of CFD prediction. To obtain comparative data, the temperature distribution and velocity vector profiles were measured in a full-scale cold storage facility and in a 1/5 scale model. The agricultural products domain in cold storage was modeled as porous for economical computation. The RSM prediction showed good agreement with experimental data. In addition, temperature distribution was simulated in the cold storage rooms to estimate the uniformity of temperature distribution using the validated model.

Axisymmetric Thermal Analysis of 3D Regenerative Cooling System (3차원 재생 냉각 시스템의 축대칭 열해석)

  • Kim Sung-In;Park Seung-O
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2006
  • Axisymmetric numerical thermal analysis for a 3-dimensional regenerative cooling system in a rocket engine is carried out. To predict the accurate heat transfer with the stiff temperature distribution, several tests have been conducted for the grid size, the properties variation of the coolant and the combustion gas depending on temperature. The axisymmetric heat flux model is defined using fin efficiencies and is designed to be equivalent to the heat flux of the 3-dimensional coolant channel. For comparison purpose, the 1-dimensional analysis using Bartz equation is also conducted. The performance of the present model in predicting the cooling characteristics of a 3-dimensional regenerative cooling system is compared with the 3-dimensional results of RTE(Rocket Thermal Evaluation). It is found that the present method predicts much closer results to those of RTE code than 1-dimensional analysis.

The Estimation of Transient Temperature Distributions in Tumor Model during Ultrasonic Hyperthermia (초음파 Hyperthermia에 의한 종양모델내의 동적 온도분포 추정)

  • 박태연;성굉모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.46-56
    • /
    • 1986
  • Hyperthermia를 사용하여 종양세포를 치료하는데 있어서 시간에 따른 동적 온도분포를 추정하 고 또, 그 온도분포에 관계하는 인자들이 동적 온도특성에 미치는 영향을 살펴보는 것은 실제 치료시에 정확한 온도제어를 위해서 반드시 필요하다. 본 논문에서는 몸속 10cm 깊이에 존재하는 원통형 종양모 델을 설정하고 초음파 동심환 변환기로 열을 집속시켰을 때 동적 온도분포 추정을 위해서 2차원 유한요 소법과 유한차분법을 이용하였다. 결과로서, 동적 온도분포에 가장 큰 영향을 미치는 인자는 혈류량이었 고, 추출된 동적 온도분포 특성값을 가지고 간단한 ON/OFF 온도제어에 적용할 수 있음을 보였다.

  • PDF

The Survey of Cold Storage Temperature and Determine of Appropriate Statistics Probability Distribution Model (국내 식품냉장창고 온도분포 분석 및 적정 확률분포모델 설정)

  • Kim, Hyong-Tae;Kim, Sang-Kyu;Behk, Ok-Jin;Bahk, Gyung-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.312-316
    • /
    • 2012
  • This study was to present the proper probability distribution models that based on the data for surveys of food cold storage temperatures as the input variables to the further MRA (Microbial risk assessment). The temperature was measured by directly visiting 7 food plants. The overall mean temperature for food cold storages in the survey was $2.55{\pm}3.55^{\circ}C$, with 2.5% of above $10^{\circ}C$, $-3.2^{\circ}C$ and $14.9^{\circ}C$ as a minimum and maximum. Temperature distributions by space-locations was $0.80{\pm}1.69^{\circ}C$, $0.59{\pm}1.68^{\circ}C$, and $0.65{\pm}1.46^{\circ}C$ as an upper (2.4~4 m), middle (1.5~2.4 m), and lower (0.7~1.5 m), respectively. Probability distributions were also created using @RISK program based on the measured temperature data. Statistical ranking was determined by the goodness of fit (GOF) to determine the proper probability distribution model. This result showed that the LogLogistic (-4.189, 5.9098, 3.2565) distribution models was found to be the most appropriate for relative MRA conduction.

Numerical Modeling for Freezing Phenomena in Food (식품 동결현상의 수학적 모델)

  • 공재열;김정한;김민용;김의웅
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.207-212
    • /
    • 1992
  • To analyze the freezing phenomena of foodstuffs, the numerical freezing model with 3 steps was established. When water and 2% agar gel were used as samples, Neumann's solution was well matched with experimental results by the numerical model. However, in the case of 20% gelatin gel and pork meat, Weiner's solution was better than Neumann's solution. This numerical freezing model was proved to be good model to describe the freezing phenomena with phase change in the point of versatility and precision.

  • PDF

Mass Transfer Characteristics in the Osmotic Dehydration Process of Carrots (당근의 삼투건조시 물질이동 특성)

  • Youn, Kwang-Sup;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.387-393
    • /
    • 1995
  • Diffusion coefficients of moisture and solid, reaction rate constants of carotene destruction, and the fitness of drying models for moisture transfer were determined to study the characteristics of mass transfer during osmotic dehydration. Moisture loss and solid gain were increased with increase of temperature and concentration; temperature had higher osmotic effect than concentration. Diffusion coefficient showed similar trend with osmotic effect. Diffusion coefficients of solids were larger than those of moisture because the movement of solid was faster than that of moisture at the high temperature. Reaction rate constants were affected to the greater extent by concentration changes than by temperature changes. Arrhenius equation was applied to determine the effect of temperature on diffusion coefficients and reaction rate constants. Moisture diffusion required high activation energy in $20^{\circ}Brix$, while relatively low in $60^{\circ}Brix$. To predict the diffusion coefficients and reaction rate constants, a model was established by using the optimum functions of temperature and concentration. The model had high $R^2$ value when applied to diffusion coefficients, but low when applied to reaction rate constants. Quadratic drying model was most fittable to express moisture transfer during drying. In conclusion, moisture content of carrots could be predictable during the osmotic dehydration process, and thereby mass transfer characteristics could be determined by predicted moisture content and diffusion coefficient.

  • PDF

Long-term Simulation of Water Temperature in Soyanggang Reservoir in Response to RCP 4.5 Climate Scenario (RCP 4.5 기후 시나리오에 따른 소양호 수온 변화 장기 모의)

  • Yun, Yeojeong;Park, Hyungseok;Chung, Sewoong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.265-265
    • /
    • 2019
  • 기후변화로 의한 기온의 상승은 가뭄, 홍수와 같은 재해를 일으킬 뿐만 아니라 깊은 호수나 저수지와 같은 수자원에도 용존 산소, 물질, 영양소 및 식물플랑크톤의 수직적 분포 등과 같은 다양한 부분에 영향을 미친다. 본 연구의 목적은 SWAT, HEC-ResSim 및 CE-QUAL-W2(이하 W2)모델을 사용하여 미래의 기후 변화에 따른 소양호의 수온, 성층강도 및 열적 안정성의 변화를 장기 예측하고 그 영향을 평가하는데 있다. W2 모델의 보정은 2005 년부터 2015 년까지의 실측 과거 데이터를 이용하여 보정하였고 기후변화 시나리오는 IPCC의 AR5 RCP 4.5 시나리오를 사용하였다. 기후자료는 GCM 모델인 HadGEM2-AO 결과를 상세화하여 모의기간의 자료를 생성하였다. SWAT모델을 이용하여 모의기간인 2016 년부터 2070 년까지 일단위로 저수지 유입을 예측했으며 HEC-ResSim모델을 이용하여 소양강댐 저수지 운영 조건에 따라 저수지 방류량 및 수위 변화를 모의하였다. 수온 해석을 위해 W2를 적용하여 저수지의 장기간의 수온 변화를 예측하였다. 결과적으로 대기 온도는 $0.0279^{\circ}C/year$(p < 0.05) 상승할 것으로 예측되었으며, 동일기간 상층(수면으로부터 5m 깊이)과 하층 (바닥으로부터 5m 높이) 수온은 각각 $0.0191^{\circ}C$/년(p < 0.05) 및 $0.008^{\circ}C$/년(p < 0.05) 상승할 것으로 예측되었다. 모의된 수온을 계절별로 분석했을 때 상층수온은 여름철 가장 큰 폭으로 상승하였으며 하층의 경우 겨울철에 가장 큰 폭으로 상승하였다. 계절별 상-하층 수온의 차는 여름이 가장 컸으며, 겨울에 온도차가 가장 작았다. 또한 미래 온도의 상승에 따라, 소양호의 성층 강도가 강해지는 경향을 보였으며 상층 및 하층의 온도차 $5^{\circ}C$를 기준으로 성층이 형성되는 기간은 큰 변동이 없었으나 소멸되는 시점이 점점 늦어지는 추세를 보여 성층 형성 기간이 길어지는 것으로 나타났다. 저수지 표면의 수온 상승은 식물플랑크톤의 계절 성장률에 영향을 미쳤는데, 특정 조건에서 규조류는 최적 성장 범위를 벗어나는 고온 조건에서 성장속도가 감소하였으나 녹조류와 남조류의 출현 시기가 빨라지며 장기화될 것으로 예측되었다.

  • PDF