• Title/Summary/Keyword: 2상 횡유동

Search Result 12, Processing Time 0.029 seconds

Hydrodynamic Mass and Damping of Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 튜브집합체의 추가질량과 감쇠)

  • 김범식;손갑헌;김병구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1128-1146
    • /
    • 1989
  • 본 논문에서는 2상 횡유동의 진동 메카니즘을 규명하기 위한 실험계획의 일환으로 실시된 실험으로 부터 튜브집합체의 추가질량(hydrodynamic mass)과 감쇠 (damping)에 대해 고찰하였다. 실험은 튜브배열과 피치 대 직경비(pitch-over-di- ameter:.rho./d)가 상이한 튜브집합체에 대해 2상 유체를 모의한 공기-물(air-water) 혼합물에서 수행하였다. 액체상태로부터 99%의 보이드율까지 변화된 2상 유체의 유량은 튜브가 유체탄성 불안정성 (fluidelastic instability)에 도달할 때까지 점진적으로 증가하였다.

Fluid-Elastic Instability of Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 튜브군의 유체탄성 불안정성)

  • 김범식;장효환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1948-1966
    • /
    • 1991
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as condensers, reboilers and nuclear steam generators. To avoid problems due to excessive vibration, information on vibration excitation in two-phase cross-flow is required. Fluid-elastic instability is discussed in this paper. Four tube bundle configurations were subjected to increasing flow up to the onset of fluid-elastic instability. The tests were done on bundles with one flexible tube surrounded by rigid tubes. The fluid-elastic instability behavior is different for intermittent flows than for bubbly flows. For bubbly flows, the observed instabilities satisfy the relationship V/fd=K(2.pi..zeta. m/rho. $d^{21}$)$^{0.51}$ in which the minimum instability factor K was found to be 2.3 for bundles of p/d=1.22. The lowest critical velocities for fluid-elastic instability were experienced with parallel-triangular tube bundles. For intermittent flow, the observed instabilities did not follow the forgoing relation-ship. Significantly lower flow velocities were required for instability..

Numerical Simulation Study on Gas-Particle Two-Phase Jets in a Crossflow (I) -Two-Phase Jet Trajectory and Momentum Transfer Mechanism- (고체입자가 부상된 자유 횡분류 유동에 대한 전산모사 연구 (I) -2상 분류궤적과 운동량 전달기구-)

  • 한기수;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.252-261
    • /
    • 1991
  • A particle trajectory model to simulate two-phase particle-laden crossjets into two-dimensional horizontal free stream has been developed to study the variations of the jet trajectories and velocity variations of the gaseous and the particulate phases. The following conclusions may be drawn from the predicted results, which are in agreement with experimental observations. The penetration of the two-phase jet in a crossflow is greater than that of the single-phase jet. The penetration of particles into the free stream increases with increasing particle size, solids-gas loading ratio and carrier gas to free stream velocity ratio at the jet exit. When the particle size is large, the solid particles separate from the carrier gas , while the particles are completely suspended in the carrier gas for the case of small size particles. As the particle to carrier gas velocity ratio at the jet exit is less than unity, the particles in the vicinity of the jet exit are accelerated by the carrier gas. As the injection angle is increased, the difference of the particle trajectory from that of the pure gas becomes larger. Therefore, it can be concluded that the velocities and trajectories of the particle-laden jets in a crossflow change depending on the solids-gas loading ratio, particle size, carrier gas to free stream velocity ratio and particle to gas velocity ratio at the jet exit.

Fluid-elastic Instability in a Tube Array Subjected to Two-Phase Cross Flow (2 상 횡 유동장에 놓인 관군의 유체탄성불안정성)

  • Sim, Woo-Gun;Park, Mi-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.124-132
    • /
    • 2009
  • Experiments have been performed to investigate fluid-elastic instability of tube bundles, subjected to twophase cross flow. Fluid-elastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to the cross flow. The test section consists of cantilevered flexible cylinder(s) and rigid cylinders of normal square array. From a practical design point of view, fluid-elastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping parameter. For dynamic instability of cylinder rows, added mass, damping and the threshold flow velocity are evaluated. The Fluid-elastic instability coefficient is calculated and then compared to existing results given for tube bundles in normal square array.

Experimental Study about Two-phase Damping Ratio on a Tube Bundle Subjected to Homogeneous Two-phase Flow (균질 2상 유동에 놓인 관군에 작용하는 감쇠비에 대한 실험적 연구)

  • Sim, Woo Gun;Dagdan, Banzragch
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.171-181
    • /
    • 2017
  • Two-phase cross flow exists in many shell-and-tube heat exchangers such as condensers, evaporators, and nuclear steam generators. The drag force acting on a tube bundle subjected to air/water flow is evaluated experimentally. The cylinders subjected to two-phase flow are arranged in a normal square array. The ratio of pitch to diameter is 1.35, and the diameter of the cylinder is 18 mm. The drag force along the flow direction on the tube bundles is measured to calculate the drag coefficient and the two-phase damping ratio. The two-phase damping ratios, given by the analytical model for a homogeneous two-phase flow, are compared with experimental results. The correlation factor between the frictional pressure drop and the hydraulic drag coefficient is determined from the experimental results. The factor is used to calculate the drag force analytically. It is found that with an increase in the mass flux, the drag force, and the drag coefficients are close to the results given by the homogeneous model. The result shows that the damping ratio can be calculated using the homogeneous model for bubbly flow of sufficiently large mass flux.

Approximate Model of Viscous and Squeeze-film Damping Ratios of Heat Exchanger Tubes Subjected to Two-Phase Cross-Flow (2 상 유동장에 놓인 열 교환기 튜브에 작용하는 점성과 압착막 감쇠비의 어림적 해석 모델)

  • Sim, Woo Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.97-107
    • /
    • 2015
  • An analytical model was developed to estimate the viscous and squeeze-film damping ratios of heat exchanger tubes subjected to a two-phase cross-flow. Damping information is required to analyze the flow-induced vibration problem for heat exchange tubes. In heat exchange tubes, the most important energy dissipation mechanisms are related to the dynamic interaction between structures such as the tube and support and the liquid. The present model was formulated considering the added mass coefficient, based on an approximate model by Sim (1997). An approximate analytical method was developed to estimate the hydrodynamic forces acting on an oscillating inner cylinder with a concentric annulus. The forces, including the damping force, were calculated using two models developed for relatively high and low oscillatory Reynolds numbers, respectively. The equivalent diameters for the tube bundles and tube support, and the penetration depth, are important parameters to calculate the viscous damping force acting on tube bundles and the squeeze-film damping forces on the tube support, respectively. To calculate the void fraction of a two-phase flow, a homogeneous model was used. To verify the present model, the analytical results were compared to the results given by existing theories. It was found that the present model was applicable to estimate the viscous damping ratio and squeeze-film damping ratio.

Vibration Characteristics of Heat Exchanger Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 열교환기 관군의 진동특성)

  • 김범식;박태철
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.199-208
    • /
    • 1994
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as nuclear steam generators, condensers and reboilers. An understanding of damping and of flow-induced vibration excitation mechanisms in necessary to avoid problems due to excessive tube vibration. In this paper, we present the results of experiments on normal-triangular tube bundles of pitch to tube diameter ratio, p/d, 1.22, 1.32 and 1.47. The bundle were subjected to air-water mixtures to simulate realistic mass fluxes and vapour qualities corresponding to void fractions from 5 to 99%. Damping, fluidelastic instability and turbulence- induced excitation are discussed. The behaivior of damping and two vibration mechanisms are different for intermittent flows from for bubbly flows. The effect of pitch to tube diameter ratio and void fraction is dominant on damping and fluidelastic instability.

  • PDF

The effects of tube bundle geometry on vibration in two-phase cross-flow (2상 횡유동에서 열교환기 관군 배치에 다른 진동특성 고찰)

  • 김범식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.681-687
    • /
    • 2001
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as steam generators, condensers and reboilers. An understanding of flow-induced vibration excitation mechanism is necessary to avoid problems due to excessive tube vibration. This paper presents the results of a series of experiments done on tube bundles of different geometries subjected to two-phase cross-flow simulated by air-water mixtures. Normal(30$^{\circ}$) and rotated (60$^{\circ}$)triangular, and normal(90$^{\circ}$) and rotated (45$^{\circ}$) square tube bundle configurations of pitch-to-diameter ratio of 1.2 to 1.5 were tested over a range of mass fluxes from 0 to 1,000kg/$m^2$ㆍ s and void fraction from 0 to 100%. The effects of tube bundle geometry on vibration excitation mechanism such as fluidelastic instability and random turbulence, and on dynamic parameters such as damping and hydrodynamic mass are discussed. A lower pitch-to-diameter results in a higher hydrodynamic mass. The effect of tube bundle configurations on damping and random turbulence excitation is minor. The effect of pitch-to-diameter on the fluidelastic instability, however, is significant.

  • PDF

Plio-Quaternary Seismic Stratigraphy and Depositional History on the Southern Ulleung Basin, East Sea (동해 울릉분지 남부의 플라이오-제4기 탄성파 층서 및 퇴적역사)

  • Joh, Min-Hui;Yoo, Dong-Geun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.2
    • /
    • pp.90-101
    • /
    • 2009
  • Analysis of multi-channel seismic reflection data from the Southern Ulleung Basin reveals that Plio-Quaternary section in the area consists of nine stacked sedimentary units separated by erosional unconformities. On the southern slope, these sedimentary units are acoustically characterized by chaotic seismic facies without distinct internal reflections, interpreted as debris-flow bodies. Toward the basin floor, the sedimentary units are defined by well-stratified facies with good continuity and strong amplitude, interpreted as turbidite/hemipelagic sediments. The seismic facies distribution suggests that deposition of Plio-Quaternary section in the area was controlled mainly by tectonic movement and sea-level fluctuations. During the Pliocene, sedimentation was mainly controlled by tectonic movements related to the back-arc closure of the East Sea. The back-arc closure that began in the Miocene caused compressional deformation along the southern margin of the Ulleung Basin, resulting in regional uplift which continued until the Pliocene. Large amounts of sediments, eroded from the uplifted crustal blocks, were supplied to the basin, depositing Unit 1 which consists of debris-flow deposits. During the Quaternary, sea-level fluctuations resulted in stacked sedimentary units (2-9) consisting of debris-flow deposits, formed during sea-level fall and lowstands, and thin hemipelagic/turbidite sediments, deposited during sea-level rise and highstands.

Applicability Evaluation of Using Logarithmic velocity law for Assessing Local Shear Stress in Straight and Meandering River Channel (직선 및 사행 하천에서의 대수법칙를 이용한 국부 소류력 산정 적용성 검토)

  • Kim, Jong Min;Kim, Dong Su;Son, Geun Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.172-172
    • /
    • 2015
  • 하천에서 발생하는 소류력은 하상 변동을 발생시키기 때문에 주변 구조물이나 하천의 흐름특성 등을 변화시키게 되며, 유사이송, 침식 및 퇴적, 유동해석 등에 매우 중요한 하천 계수이다. 하천에서 소류력의 직접 측정은 매우 어려워 직접 측정 대신 하천경사 및 동수반경을 기반한 단면 평균소류력 산정 공식을 일반적으로 이용한다. 그러나, 이러한 방식은 상세한 유사이송, 세굴 등의 해석에는 한계가 있기 때문에 국부적인 소류력이 필요하다. 실내 실험에서는 프레스톤게이지를 활용한 직접 측정이나, 난류측정을 통한 레이놀즈 분포를 외삽하여 단면에서 국부적인 소류력을 측정하는 방식이 사용되어 왔다. 반면, 실제 하천에서는 국부 소류력 직접측정 및 난류 산정이 거의 불가능하거나 비효율적이므로 대안으로 하천의 연직유속분포에 대수분포를 적용하여 소류력을 추정하는 간접적인 방법이 제시되어 왔다. 일부 실내실험에서 대수법칙을 통한 소류력 산정 방식은 직접 측정을 통해 검증한 바가 있으나 실제 하천은 난류의 공간 시간적 스케일이 실내 규모와 상이하여 국부 소류력에 영향을 미칠 수 있어 이러한 검증결과를 현장 적용하기에는 한계가 있다. 본 연구에서는 실제 규모 하천에서 대수법칙을 활용한 국부 소류력 산정 결과와 레이놀즈 응력의 연직분포 측정을 통해 산정한 값과 비교하여 대수법칙 활용 소류력 산정 방식의 적용성을 검토하였다. 실험은 중소규모의 하천을 재현한 한국건설기술연구원 안동하천실험센터 직선(A1) 및 사행(A2) 하천의 유속측정을 수행하였으며, 유속 측정에는 정밀도가 높으나 실내에서 주로 사용된 초음파지점유속계(Micro ADV)를 현장에 설치하여 사용하였다. ADV의 관측 시간은 90초이며, 직선수로에서는 횡방향으로 25 cm 간격, 수심방향으로는 5 ~ 10 cm 간격으로 측정하였고, 사행수로는 횡방향으로 50 cm 간격, 수심방향 5 ~ 10 cm 간격으로 측정을 수행하였다. 실험결과 대수법칙과 레이놀즈 분포로부터 산정된 국부 소류력은 사행과 직선 모두 상당한 이격을 보였다.

  • PDF