• Title/Summary/Keyword: 2단계 물 분해

Search Result 212, Processing Time 0.028 seconds

Functional Properties of Fish Skin Gelatin Hydrolysate from a Continuous Two-Stage Membrane Reactor (2단계 막반응기에서 연속적으로 생산된 어피젤라틴 가수분해물의 기능성)

  • Kim, Se-Kwon;Byun, Hee-Guk;Jeon, You-Jin;Cho, Duck-Jae
    • Applied Biological Chemistry
    • /
    • v.37 no.2
    • /
    • pp.85-93
    • /
    • 1994
  • The fish skin gelatin hydrolysates were produced using a continuous two-stage membrane (MWCO 10,000, MWCO 5,000) reactor, and molecular weights, amino acids and functional properties of the hydrolysates were investigated. The major molecular weights distribution of the major fractions were $8{\sim}10\;KDa$ and $4.5{\sim}6.5\;KDa$ in the 1st-step hydrolysates, $2{\sim}6\;KDa$ and $0.5{\sim}2\;KDa$ in the 2nd-step hydrolysates. Among the amino acids in the hydrolysates, glycine, proline, serine, alanine, hydroxyproline, glutamic acid and aspartic acid having sweet taste were responsible for $68{\sim}72%$ of the total amino acids. But valine, methionine, isoleucine, leucine, phenylalanine and histidine having a bitter taste were only $23{\sim}25%$ Taste evaluations show that the gelatin hydrolysates have a brothy and sweet taste, 2nd-step hydrolysate have more a favorable taste than 1st-step hydrolysate. The hydrolysates were completely soluble and clear over the entire pH range. Moisture sorption at intermediate water activities of the 2nd-step hydrolysate was much higher than the unmodified fish skin gelatin, but foaming and emulsification properties were poor. Buffer capacity of the 2nd-step hydrolysate was higher than the fish skin gelatin and 1st-step hydrolysate, while viscosities of the hydrolysates were lower than the fish skin gelatin.

  • PDF

Development of Natural Seasoning from Alaska Pollack Skin Gelatin Using Continuous Three-Step Membrane Reactor (연속식 3단계 막 반응기를 이용한 명태피 젤라틴으로부터의 천연조미료 개발)

  • 김세권;전유진
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.510-517
    • /
    • 1995
  • The hydrolysates of three kinds [FSEH(first step enzymatic hydrolysate), SSEH(second step enzymatic hydrolysate), and TSEH(third step enzymatic hydyolysate)] were prepared by continuous hydrolysis of Alaska pollack(Theragra chalcogramma) skin gelatin with three-step membrane enzyme reactor. The molecular weight distributions of FSEH, SSEH, and THSE are 9,500∼4,800Da, 6,600∼3,400Da, and 2,300∼900Da, respectively. The contents of amino acid having sweet taste (glycine, proline, serine, alanine, hydroxyproline, glutamic acid, and aspartic acid) were about 70% of total amino acid being in the three kind hydrolysates. We also tried preparing of natural seasonings (complex seasoning and enzymeatic hydrolysale sauce) using the hydrolysates. From the results of sensory evaluations, complex seasoning containing TSEH was nearly equal to shellfish complex seasoning on the market. The mixture sauce which was made by mixing of 80% enzymatic hydrolysis sauce and 20% fermented soy sauce, was at least similar to the tradition soybean sauce in product quality, too.

  • PDF

Thermal Decomposition of Barium Titanyl Oxalate Tetrahydrate (티타닐 옥살산 바륨 사 수화물의 분해 반응)

  • Lee, Sang-Beom
    • The Journal of Natural Sciences
    • /
    • v.1
    • /
    • pp.47-59
    • /
    • 1987
  • The thermal decomposition mechanism of BaTiO($$C_2$$O_4$)_2$ $4H_2$O has been investigated employing TG, DTG, and DTA techniques. The intermediate compounds and the gaseous products of decomposition were examined by IR spectrometer and X-ray analyser. The decomposition proceeds through five steps. The first step which is the dehydration of the tetrahydrate is followed by the decomposition of oxalate groups. During the second decomposition, half a mole of carbon monoxide is evolved. The oxalate groups are completely destroyed in the range $260~460^{\circ}C$, resulting in the formation of a carbonate which retains free carbon dioxide in the matrix . the final decomposition of the carbonate takes place between $650~750^{\circ}C$ and yields $BaTiO_3$.

  • PDF

Product distribution of rapid devolatilization of pulverized coal (미분탄의 고속열분해시 생성물 분포해석)

  • Park, Hoyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.76.2-76.2
    • /
    • 2011
  • 석탄의 탄종별 열분해 생성물은 석탄가스화기의 뮬레이션 기법의 첫 번째 단계이며 이러한 탄종별 생성물 예측은 가스화기의 성능, 즉 가스화기 출구 가스조성, 탄소전환율, 냉가스 전환율등을 예측하는데 있어 가장 기본적이고 중요한 절차이다. 본 논문에서는 석탄가스화기내 열분해 과정을 모사할 수 있도록 석탄 성상과 가스화기 운전압력에 따라 탄종별 고온고압 열분해시의 생성물을 정량적으로 계산하는 방법을 제시하였다. Merrick(1983)의 방법을 기반으로 석탄의 성상(공업/원소분석치), 가스화기 운전압력과 몇가지 상관관계식으로부터 고온고압하 열분해 생성물을 계산하는 방법이며 이를 프로그램화하여 가스화기 시뮬레이터용 모듈로 구성할 수 있도록 하였다. 또한, 국내 수입 5개 탄종에 대하여 열분해 생성물의 조성을 구하였으며 이를 상용 열분해모델의 결과와 서로 비교하였다. 열분해 생성물 조성의 분포는 다른 상용 프로그램 결과와 부합하였으며 생성물의 발열량도 원탄의 발열량과 적합한 결과를 보여주었다.

  • PDF

A Case Study of Three Dimensional Human Mimic Phantom Production for Imaging Anatomy Education (영상해부학 교육을 위한 3차원 인체 모사 조형물 제작 사례 연구)

  • Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • In this study, human mimic phantoms outputted by three-dimensional (3D) printing technology are reported. Polylactic acid and a personal 3D printer - fused deposition modeling (FDM) - are used as the main material and the printing device. The output of human mimic phantoms performed in the following order: modeling, slicing and G-code conversion, output variable setting, 3D output, and post-processing. The students' learning satisfaction (anatomical awareness, study interest) was measured on 5-point Likert scale. After that, Twenty of those phantoms were outputted. The total output took 11,691 minutes (194 hours 85 minutes) and the average output took 584.55 minutes (9 hours 7 minutes). The filament used for the experiment was 2,390.2 g, and the average use of the filament was 119.51 g. The learning satisfaction of anatomical awareness was 4.6 points on the average and the interest of the class was on average 4.5 points. It is expecting that 3D printing technology can enhance the learning effect of imaging anatomy education.

Thermochemical hydrogen production utilization of M-ferrite (M=Co,Ni,Mn) (M-ferrite를 이용한 열화학적 수소제조 (M=Co,Ni,Mn))

  • Cho Mi-Sun;Kim Woo-Jin;Woo Sung-Woong;Park Chu-Sik;Kang Kyoung-Soo;Choi Sang-Il
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.69-74
    • /
    • 2006
  • 본 연구는 페라이트의 Fe 양이온 일부를 Ni, Mn, Co등으로 치환하여 M-ferrite를 제조하여 열화학적 2단계 물 분해 반응의 특성을 비교 평가하였고, XRD, SEM, GC등의 분석으로 각 금속산화물의 특성을 확인하였다. M-ferrites 는 고상법으로 제조하였다. 각각의 M-ferrite에 대한 열적환원은 1573K 에서 진행하였고 물 분해 반응은 1273K 에서 실시하였다. 이 반응에서 생성된 가스는 전량 포집하여 GC를 통해 분석하였다. 반응 전후의 시료에 대하여 SEM, XRD를 분석하여 GC결과와 함께 금속산화물의 산화환원반응 특성을 고찰하였다. 그 결과로서 물 분해 반응 후 M-ferrite (M=Co, Ni, Mn)의 생성을 XRD를 통하여 확인할 수 있었고, 물 분해 반응과의 비교결과 격자상수의 증대가 M-ferrite내의 산소의 환원에 영향을 미치는 것을 알 수 있었다. SEM결과에서는 4cycle의 물 분해 반응 후 Mn-ferrite의 심한 sintering 현상을 확인 할 수 있었다.

  • PDF

A Process Study on the Cave Deposits: Speleothems (동굴(洞窟) 퇴적물(堆積物)의 형성과정(形成過程)에 관한 연구(硏究))

  • Oh, Jong-Woo
    • Journal of the Speleological Society of Korea
    • /
    • no.89
    • /
    • pp.46-58
    • /
    • 2008
  • 동굴 퇴적물의 형성과정은 1단계 기권 (Atmosphere): 빗방울 (H2O) 이 대기중에서 CO2의 혼합으로 산성비 (H2CO2)가 되어 석회암 (CaCO3)에 떨어져서 최초의 용식작용이 시작된다. 2단계 토양권 (Pedosphere): 산성비와 석회암성분이 합쳐 형성된 가용성 화합물 (Ca(HCO3)2)은 식생부식(植生腐植)에 의한 토양 (Humic acidic soils) 에 의해 기반암의 용식이 촉진 되어 지표에는 Karren과 석문 (석문(石門) Natural Bridge), 와지 (Dolines, Sinkholes) 지형을 형성시키고, 암석의 분순물은 지표에 남겨져서 결국 적색풍화토 (Residuum, Risidual Redish Soils) 를 만든다. 3단계 암권 (Lithosphere): 용식작용에 의해 지상에서 지하 로 확대되어진 모암의 균열을 타고, 지하의 공간이 지하수의 유입과 유출에 의해 점차 확대되어 동공형의 Conduites; Voids; Shaft 이라는 특수지형을 형성시키고,동굴의 천정으로부터 나온 Ca(HCO3)2 는 탄산염의 지속적인 분해 공급에 의해 동굴내에는 종류석, 석순, 유착석 (Speleothem)등의 새로운 동굴지형 (Speleoscape)을 조성하게 된다. 4단계 수권 (Hydrosphere): 동굴의 형성작용을 거친 물은 동굴지하수로 잔여 Calcite를 함유한 채로 유출 (Spring) 된다. 동굴을 떠난 잔여 Calcite는 또다시 하천유역에 침전시켜서 석회화 단구형의 집적지형 (Tufa Formation: Tufa Dam, Tufa Flowstone)을 최종적으로 동굴을 나와 외벽 이나 하천의 바닦에 형성하는 과정을 거치면서 카르스트 지형의 발달과정이 1차적인 순환을 마치게 된다.

Thermochemical hydrogen production utilization of M-ferrite (M=Co,Ni,Mn) (M-ferrite를 이용한 열화학적 수소제조(M=Co,Ni,Mn))

  • Cho, Mi-Sun;Kim, Woo-Jin;Woo, Sung-Woong;Park, Chu-Sik;Kang, Kyoung-Soo;Choi, Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.43-46
    • /
    • 2006
  • 본 연구는 페라이트의 Fe 양이온 일부를 Ni, Mn, Co등으로 치환하여 M-ferrites를 제조하여 열화학적 2단계 물 분해 반응의 특성을 비교 평가하였고, XRD, SEM, GC등의 분석으로 각 금속산화물의 특성을 확인하였다. M-ferrites는 고상법으로 제조하였다. 각각의 M-ferrites에 대한 열적환원은 1573K에서 진행하였고 물 분해 반응은 1273K에서 실시하였다. 이 반응에서 생성된 가스는 전량 포집하여 GC를 통해 분석하였다. 반응 전후의 시료에 대하여 SEM, XRD를 분석하여 GC결과와 함께 금속산화물의 산화환원반응 특성을 고찰하였다. 그 결과로서 물 분해 반응 후 M-ferrite (M=Co, Ni, Mn)의 생성을 XRD를 통하여 확인할 수 있었고, 물 분해 반응과의 비교결과 격자상수의 증대가 M-ferrite내의 산소의 환원에 영향을 미치는 것을 알 수 있었다. SEM결과에서는 4cycle의 물 분해 반응 후 Mn-ferrite의 심한 sintering 현상을 확인 할 수 있었다.

  • PDF

Isolation and Characterization of Antioxidative Peptides from Enzymatic Hydrolysates of Yellowfin Sole Skin Gelatin (가자미피 젤라틴 가수분해물로부터 항산화성 펩티드의 분리${\cdot}$정제 및 특성)

  • KIM Se-Kwon;LEE Hyun-Chel;BYUN He-Guk;JEON Yon-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.246-255
    • /
    • 1996
  • To develop a natural antioxidative peptide, the gelatin was extracted from fish (Yellowfin sole) skin by hot $water(50^{\circ}C)$ extraction method and hydrolyzed with Alcalase, pronase and collagenase through a continuous 3-step membrane reactor. Each step enzymatic hydrolysates were determined the antioxidative activity and their synergistic effects, compared with $\alpha-tocopherol$ and butylated hydroxytoluene (BHT). Also, we tried to investigate the antioxidative disposition of peptide which was successfully separated by gel filtration, ion-exchange chromatography, and HPIC in cultured rat hepatocytes intoxicated with tert-butyl hydroperoxide (TBHP). Second step enzymatic hydrolysate (SSEH) among all hydrolysates and $\alpha-tocoperol$ was showed the strongest antioxidative activity. The optimum concentration of antioxidative activity for SSEH was $1\%(w/w)$ in linoleic acid. The synergistic effects were increased in using the hydrolysate with tocopherol and BHT. In the presence of the peptide isolated from SSEH, supplemented hepatocytes exposed to TBHP showed that delayed cell killing and decreased significantly the lipid peroxidation, compared with hepatocytes not cultured with isolated peptide.

  • PDF

Continuous Production of Fish Skin Gelatin Hydrolysate Using a Two-Stage Membrane Ractor (2단계 막반응기를 이용한 어피젤라틴 가수분해물의 연속적 생산)

  • Kim, Se-Kwon;Byun, Hee-Guk;Jeon, You-Jin;Yang, Hyun-Phil;Jou, Duk-Je
    • Applied Biological Chemistry
    • /
    • v.37 no.2
    • /
    • pp.130-141
    • /
    • 1994
  • A continuous two-stage membrane (1st-SCMR, MWCO 10,000; 2nd-SCMR, MWCO 5,000) reactor was developed and optimized for the production of fish skin gelatin hydrolysate with different molecular size distribution profiles using trypsin and pronase E. The optimum operating conditions in the 1st-step membrane reactor using trypsin were: temperature, $55^{\circ}C$ ; pH 9.0; enzyme concentration, 0.1 mg/ml; flux, 6.14 ml/min; reaction volume, 600 ml; and the ratio of substrate to trypsin, 100 (w/w). After operating for 1 hr under the above conditions, 79% of total amount of initial gelatin was hydrolysed. In the 2nd-step using pronase E under optimum operating conditions[temperature, $50^{\circ}C$ ; pH 8.0; enzyme concentration, 0.3 mg/ml; flux, 6.14 ml/min; reaction volume, 600 ml; and the ratio of substrate to pronase E, 33 (w/w)], the 1st-step hydrolysate was hydrolysed above 80%. Total enzyme leakages in the 1st-step and 2nd-step membrane reactors were about 11.5% at $55^{\circ}C$ for 5hrs and 9.0% at $50^{\circ}C$ for 4 hrs, respectively. However, there was no apparent correlation between enzyme leakage and substrate hydrolysis. The membrane has a significant effect on activity lose of trypsin and pronase E activity for 1 hr of the membrane reactors operation. The loss of initial activity of enzymes were 34% and 18% in the 1st-step and 2nd-step membrane reactor, whereas were 23% and 10% after operating time 3 hr in the 1st-step and 2nd-step membrane reactor lacking the membrane, respectively. The productivities of 1st-step and 2nd-step membrane reactor for 8 times of volume replacement were 334 mg and 250 mg per mg enzyme, respectively.

  • PDF