• Title/Summary/Keyword: 2극자

Search Result 80, Processing Time 0.027 seconds

Electrospray ionization tandem mass fragmentation pattern of camostat and its degradation product, 4-(4-guanidinobenzoyloxy)phenylacetic acid (Camostat 및 분해산물 4-(4-guanidinobenzoyloxy)phenylacetic acid의 전자분무 이온화 텐덤 질량 fragmentation 패턴)

  • Kwon, Soon-Ho;Shin, Hye-Jin;Park, Ji-Myeong;Lee, Kyoung-Ryul;Kim, Young-Jin;Lee, Sang-Hoo
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.78-84
    • /
    • 2011
  • The fragmentation patterns of a serine protease inhibitor, camostat, and its degradation product, 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA), were for the first time investigated by a triple quadrupole tandem mass spectrometry equipped with an electrospray source (ESI-MS/MS) in positive and/or negative ion mode under collision-induced dissociation (CID). The positive CID spectrum of camostat showed distinctly that the single bond (C-O) cleavage between carbonyl group and oxygen atom of the ester bonds of the compound favorably occurred and then the loss of N,N-dimethylcarbamoylmethyl group was more susceptible than that of guanidine moiety. In the positive ion CID spectrum of GBPA, the initial cleavage between the carbonyl group and oxygen atom of 4-guanidinobenzoyloxy group also occurred, yielding the most abundant fragment ion at m/z 145. On the other hand, the negative CID spectrum of GBPA characteristically showed the occurrence of the most abundant peak at m/z 226 resulting from the sequential neutral losses of $CO_2$ and HN=C=NH from the parent ion at m/z 312.

Magnetic Properties and the Crystallization of Amorphous Nd-Fe-Ti-B (Nd-Fe-Ti-B 비정질 합금의 자기적 성질 연구)

  • 이승화;안성용;김철성;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.3
    • /
    • pp.140-145
    • /
    • 1997
  • The amorphous state of $NdFe_{10.7}TiB_{0.3}$ and its nanocrystallization have been studied by X-ray diffraction, 모스바우어 spectroscopy, and a vibrating sample magnetometer (VSM), $NdFe_{10.7}TiB_{0.3}$ amorphous ribbons were fabricated by a sigle-roll melt-spinning method. The average hyperfine field $H_{hf}$(T) of the amorphous state shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.46(T/T_c)^{3/2}-0.34(T/T_c)^{5/2}$ for $T/T_c<0.7$ indicative of spin wave excitation. The quadrupole splitting just above the Curie temperature $T_c$ is 0.46 mm/s, whereas the average quadrupole shift below $T_c$ is zero. The Curie and crystallization temperatures are determined to be $T_c$=380K and $T_x=490K$, respectively, for a heating rate of 5 K/min. The occupied area of nanocrystalline phase at around 770K is about 65%. Above the Curie temperature, VSM data show magnetic moments increases again. The formation of $\alpha$-Fe is the main reason for the increasing moment as conformed with the 모스바우어 measurements.

  • PDF

Development of a Noble Gas Isotope Dilution Mass Spectrometric System Combined with a Cryogenic Cold Trap (초저온 냉각 트랩을 결합한 비활성기체 동위원소 희석 질량분석 시스템의 제작)

  • HONG, BONGJAE;SHIN, DONGYOUB;PARK, KEYHONG;HAHM, DOSHIK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.144-157
    • /
    • 2022
  • Noble gases, which are chemically inert and behave conservatively in marine environments, have been used as tracers of physical processes such as air-sea gas exchange, mixing of water masses, and distribution of glacial meltwater in the ocean. For precise measurements of Ne, Ar, and Kr, we developed a mass spectrometric system consisting of a quadrupole mass spectrometer (QMS), a high vacuum preparation line, an activated charcoal cryogenic trap (ACC), and a set of isotope standard gases. The high vacuum line consists of three sections: (1) a sample extraction section that extracts the dissolved gases in the sample and mixes them with the standard gases, (2) a gas preparation section that removes reactive gases using getters and separates the noble gases according to their evaporation points with the ACC, and (3) a gas analysis section that measures concentrations of each noble gas. The ACC attached to the gas preparation section markedly lowered the partial pressures of Ar and CO2 in the QMS, which resulted in a reduced uncertainty of Ne isotope analysis. The isotope standard gases were prepared by mixing 22Ne, 36Ar, and 86Kr. The amounts of each element in the mixed standard gases were determined by the reverse isotope dilution method with repeated measurements of the atmosphere. The analytical system achieved precisions for Ne, Ar, and Kr concentrations of 0.7%, 0.7%, and 0.4%, respectively. The accuracies confirmed by the analyses of air-equilibrated water were 0.5%, 1.0%, and 1.7% for Ne, Ar, and Kr, respectively.

A Solid-state 27Al MAS and 3QMAS NMR Study of Basaltic and Phonolitic Silicate Glasses (현무암과 포놀라이트 비정질 규산염의 원자구조 차이에 대한 고상핵자기 공명 분광분석 연구)

  • Park, Sun Young;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • While the macroscopic properties and eruption style of basaltic and phonolitic melts are different, the microscopic origins including atomic structures are not well understood. Here we report the atomic structure differences of glass in diopside-anorthite eutectic composition (basaltic glass) and phonolitic glass using high-resolution 1D and 2D solid-state Nuclear Magnetic Resonance (NMR). The $^{27}Al$ MAS NMR spectra for basaltic glass and phonolitic glass show that the full width at half maximum (FWHM) of Al for basaltic glass is about twice than phonolitic glass, suggesting the topological disorder of basaltic magma is larger than that of phonolitic magma. The $^{27}Al$ 3QMAS NMR spectra for basaltic glass and phonolite glass show much improved resolution than the 1D MAS NMR, resolving Al and Al. Approximately 3.3% of Al is observed for basaltic glass, demonstrating the configurational disorder of basaltic magma is larger than phonolitic magma. This result confirms that the topological disorder of Al in basaltic glass is larger than that of phonolitic glass. The observed structural differences between basaltic glass and phonolitic glass can provide an atomistic origin for change of the macroscopic properties with composition including viscosity.

Electronic Spectroscopy of Protonated Tyr-Ala Dipeptide Ions (Tyr-Ala 펩타이드 이온의 전자전이 분광 연구)

  • Choi, Chang-Min;Kwon, Jang-Sook;Kim, Hwan-Jin;Yoon, Tae-Oh;Yang, Min-O;Kim, Nam-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.318-323
    • /
    • 2007
  • Electronic photofragmentation spectrum of protonated tyrosine-alanine dipeptide ions(YAH+) was obtained in the wavenumber region of 34500~36700 cm-1 using a quadrupole ion trap time-of-flight mass spectrometer (QIT-TOFMS). YAH+ ions were produced by electrospray ionization, stored in the ion trap and then irradiated by ultraviolet laser pulses which induced photofragmentation of the ions. The electronic photofragmentation spectrum was obtained by monitoring the photodissociation yields of YAH+ ions as a function of the laser wavelength. The spectrum exhibited two broad peaks which were assigned as S1 and S2 by theoretical calculations using a time-dependent density functional method. The broad widths of the peaks in the spectrum were explained by the overlaps of the peaks originated from various conformers of YAH+ ions which were present in the gas phase at room temperature and also by the contributions of the hot bands.

Analysis of Photoluminescence of Eu3+ in YOBr and Investigation of Critical Distance (YOBr:Eu3+ 형광체의 발광특성과 임계거리 연구)

  • Kim, Gyeong Hwa;Park, Jong Gyu;Park, Hui Dong;Han, Jeong Hwa
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.6
    • /
    • pp.570-576
    • /
    • 2001
  • The europium doped yttrium oxybromide phosphors were synthesized by solid-state reaction method. The YOBr: $Eu^{3+}$ phosphor showed a strong and narrow red emission band at 621 nm and maximum emission intensity obtained when 0.05 mol Eu ions were doped. The red emission of $Eu^{3+}$ originated from $^5D_0$ ${\rightarrow}$ $^7F_2$electric dipole transition. In order to investigate on photoluminescence behavior, several experimental skills and numerical fittings are conducted to the YOBr: $Eu^{3+}$ phosphor. The emission spectrum was measured in the UV range and then decay curve of $^5D_0$ ${\rightarrow}$ $^7F_j$transitions was examined. The energy interaction type of YOBr: $Eu^{3+}$ phosphor was dipole-dipole interaction. In addition to the calculating by critical concentration, the critical distance ($R_0$) was calculated by decay curve fitting parameter from Inokuti-Hirayamas equation, and spectral overlap method. The critical distance was 17.03, 10.51 and 7.18$\AA$ for those methods, respectively. As considering systematic error of measurements, these values are within the same order, so that the above fitting methods are plausible and recommendable.

  • PDF

Interpretation of Aeromagnetic Anomalies in the Southwestern Part of the Ogcheon Belt, Korea (옥천대 남서지역의 항공자력자료해석)

  • Baag Chang-Eob;Kang Taeseob;Lee Jung Mo
    • The Korean Journal of Petroleum Geology
    • /
    • v.4 no.1_2 s.5
    • /
    • pp.20-26
    • /
    • 1996
  • In order to uncover the subsurface geological structure in the southwestern rim of the Ogcheon Fold Belt including the Cretaceous Neungju Sedimentary Basin, we analysed and interpreted the aeromagnetic anomalies over the region. The study area belongs to Muan-gun, Yeongam-gun, Gangjin-gun, Jangheung-gun, and eastem Haenam-gun. From the qualitative analysis and quantitative modeling of the reduced-to-the-pole magnetic anomalies, following things are revealed or suggested; Even though the porphyry of higher susceptibility is not crop out in the Donggang Myeon in the northwestern part of the study area, it is supposed to have intruded the Precambrian gneiss and the Cretaceous Bulgugsa granite of lower susceptibility. Two-dimemsional modeling of profile data across the sedimentary basin of Neungiu Group reveals that the northern part of the basin is deeper than the southern part, and that the maximum depth of the basin is supposed to be $3\cal{km}$ below the surface. The western flank of the basin bottom is steeper than the eastern flank. The high susceptibility value of the Neungju Group sedimentary rocks indicates that the rocks comprises large amount of volcanic materials. This fact implies that it is hard to expect hydrocarbon reservoir in the sedimentary rocks of the Neungiu Basin.

  • PDF

Application of Dynamic Reaction Cell - Inductively Coupled Plasma Mass Spectrometry for the Determination of Calcium by Isotope Dilution Method (반응셀 유도결합플라스마 질량분석분석기를 이용한 칼슘 동위원소비율의 측정과 동위원소희석법의 적용)

  • Suh, Jungkee;Yim, Yonghyeon;Hwang, Euijin;Lee, Sanghak
    • Analytical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.417-426
    • /
    • 2002
  • Inductively Coupled Plasma Dynamic Reaction Cell Quadrupole Mass Spectrometry (ICP-DRC-QMS) was characterized for the detection of the six naturally occurring calcium isotopes. The effect of the operating conditions of the DRC system was studied to get the best signal-to-noise ratio. This experiment shows that the potentially interfering ions such as $Ar^+$, ${CO_2}^+$, ${NO_2}^+$, $CNO^+$ at the calcium masses m/z 40, 42, 43, 44 and 48 were removed by flowing $NH_3$ gas at the rate of 0.7 mL/min $NH_3$ as reactive cell gas in the DRC with a RPq value (rejection parameter) of 0.6. The limits of detection for $^{40}Ca$, $^{42}Ca$, $^{43}Ca$, $^{44}Ca$, and $^{48}Ca$ were 1, 29, 169, 34, and 15 pg/mL, respectively. This method was applied to the determination of calcium in synthetic food digest samples (CCQM-P13) provided by LGC for international comparison. The isotope dilution method was used for the determination of calcium in the samples. The uncertainty evaluation was performed according to the ISO/GUM and EURACHEM guidelines. The determined mean concentration and its expanded uncertainty of calcium was ($66.4{\pm}1.2$) mg/kg. In order to assess our method, two reference samples, Riverine Water reference sample (NRCC SLRS-3) and Trace Elements in Water reference sample (NIST SRM 1643d), were analyzed.

Characterization and Conversion Electron Mössbauer Spectroscopy of HoMn1-x-FexO3 Thin Films by Pulsed Laser Deposition (PLD를 이용한 HoMn1-x-FexO3 박막 제조 및 후방 산란형 뫼스바우어 분광 연구)

  • Choi, Dong-Hyeok;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.18-21
    • /
    • 2007
  • The hexagonal $HoMn_{1-x}-Fe_xO_3$(x=0.00, 0.05) thin films were prepared using pulsed laser deposition(PLD) method on $Pt/Ti/SiO_2/Si$ substrate. The microstructure and magnetic properties have been studied by x-ray diffraction(XRD), atomic force microscopy (AFH), scanning electron microscope(SEM:), x-ray photoelectron spectroscopy(XPS), and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). From the analysis of the x-ray diffraction patterns, the crystal structure for all films was found to be a hexagonal($P6_3cm$), which was preferentially grown along(110) direction. The lattice constant $c_0$ of the film with x=0.05 was close to that of single crystal, whereas lattice constant $a_0$ with respect to single crystal shows a slight decrease. This difference of lattice parameters between film and single crystal was caused by the lattice mismatch between the film and $Pt/Ti/SiO_2/Si$ substrate. Conversion electron $M\"{o}ssbauer$ spectrum of $HoMn_{0.95}Fe_{0.05}O_3$ thin film shows an asymmetry doublet absorption ratio at room temperature, which is due to the oriented direction of crystallographic domains. This is corresponding with analysis of x-ray diffraction. The quadrupole splitting(${\Delta}E_Q$) at room temperature is found to be $1.62{\pm}0.01mm/s$. This large ${\Delta}E_Q$ was caused by asymmetry environment surrounding Fe ion.

DRAG EFFECT OF KOMPSAT-1 DURING STRONG SOLAR AND GEOMAGNETIC ACTIVITY (강한 태양 및 지자기 활동 기간 중에 아리랑 위성 1호(KOMPSAT-1)의 궤도 변화)

  • Park, J.;Moon, Y.J.;Kim, K.H.;Cho, K.S.;Kim, H.D.;Kim, Y.H.;Park, Y.D.;Yi, Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.125-134
    • /
    • 2007
  • In this paper, we analyze the orbital variation of the Korea Multi-Purpose SATellite-1(KOMPSAT-1) in a strong space environment due to satellite drag by solar and geomagnetic activities. The satellite drag usually occurs slowly, but becomes serious satellite drag when the space environment suddenly changes via strong solar activity like a big flare eruption or coronal mass ejections(CMEs). Especially, KOMPSAT-1 as a low earth orbit satellite has a distinct increase of the drag acceleration by the variations of atmospheric friction. We consider factors of solar activity to have serious effects on the satellite drag from two points of view. One is an effect of high energy radiation when the flare occurs in the Sun. This radiation heats and expands the upper atmosphere of the Earth as the number of neutral particles is suddenly increased. The other is an effect of Joule and precipitating particle heating caused by current of plasma and precipitation of particles during geomagnetic storms by CMEs. It also affects the density of neutral particles by heating the upper atmo-sphere. We investigate the satellite drag acceleration associated with the two factors for five events selected based on solar and geomagnetic data from 2001 to 2002. The major results can be summarized as follows. First, the drag acceleration started to increase with solar EUV radiation with the best cross-correlation (r = 0.92) for 1 day delayed F10.7. Second, the drag acceleration and Dst index have similar patterns when the geomagnetic storm is dominant and the drag acceleration abruptly increases during the strong geomagnetic storm. Third, the background variation of the drag accelerations is governed by the solar radiation, while their short term (less than a day) variations is governed by geomagnetic storms.